Molecular Dynamics Simulation

Consider classical nuclear motion of N atoms on a given potential energy surface ER.

Newton’s equations of motion:
fi=MR; ¥V I (1)

OER

where f;=dp;/dt is the force on atom I, given by f; = — R,

Notice:
e [iq. 1 is a system of 3N partial differential equations of order 2

e The PES ER couples all 3NV nuclear degrees of freedom

— No analytic solution!

— Eq. 1 must be solved numerically.

Solving Eqs. 1 for molecular systems is generally referred to as Molecular Dynamics (MD)
simulation.

Types of MD Simulations

Classical molecular dynamics (CMD): Eg given by an empirical function of nuclear coor-
dinates.

Density functional-based molecular dynamics (DFT-MD): Electronic energy Er and forces
f; obtained from density functional theory (DFT) calculations.

Ab-initio molecular dynamics (AIMD): Electronic energy Er and forces f; obtained from
ab-initio calculations.

You may come across other advanced MD techniques, which we will not discuss here, e.g.,

Non-adiabatic molecular dynamics (NAMD): Goes beyond the BO approximation, more
than one PES, for photo-chemistry and photo-physics

Path-integral molecular dynamics (PIMD): a classical MD technique in an extended phase
space to account for nuclear quantum effects

There are two ways of carrying out AIMD or DFT-MD simulations with regard to the
calculation of Er and f;.

“On-the-fly”: Electronic structure calculation of Fr and f; is carried out after each update
of the nuclear positions according to Eq. 1.

Analytic PES: Electronic structure calculations of Egr and f; are carried out for many
different nuclear configurations of the system, followed by fit to analytic functions, prior
to MD simulation.

On-the-fly AIMD or DFT-MD is nowadays the standard.

Time Stepping algorithms

Newton’s equation for interacting many-particle systems (Eq. 1) cannot be solved ana-
Iytically due to the complicated dependence of the potential energy, Er, on the nuclear
degrees of freedom in real systems.

— Iterative numerical schemes have to be used.

First step: discretization of time, define time step dt.

Successive equidistant points on the time axis: t,,=madt with t,=0,

Evolution of the system described by a time series of coordinate values, termed trajectory:
R(t)) = R(0),...,R(t;-1) = R(t;, —), R(tw), ..., R(tms1) = Rt + 1) (2)

plus a similar series for the velocities R:

R(t) = R(0), ..., R(ty1) = Rty — 6t), R(t), ..., R(tme1) = Rlty, +6t) (3)

Three popular algorithms to calculate positions and velocities: Verlet, Velocity Verlet and
leap-frog algorithms.

Verlet algorithm

This algorithm is based on a Taylor series expansion of the coordinates around t forward and backward in time:

R;(t+0t) = Ry(t) + Ry(t)ot + %)f + b"é”df@()(ﬁt")
I
R;(t —6t) = Ry(t) — Ry(t)dt L Hlt) 52 bilt) 5y b O>6th

21[; 6

Where we have expressed the second derivative of coordinates in terms of force and mass. Adding the two
equations, we obtain:

o= ' f f - = =
R;(t + 0t) = 2R (t) — Ry(t — ot) + f\g)otz + O(5t")
My
Note that the accuracy is fourth order in time, one order of magnitude better than the original expansions.
Subtracting the two equations, we obtain an expression for the velocities:

26t

At t. That is, the velocity update is one step behind the position. This can be inconvenient if when would like to
calculate velocity dependent quantities such as kinetic energy.

Velocity Verlet algorithm

This algorithm is a modification of the Verlet agorithm designed so that positions and velocities are available at the
same time step.

The positions are given by the forward expansion in the previous slide disregarding terms higher than second order:

i : fr(t .
R;(t +dt) = Ry(t) + Ry(t)ot + %51&2 + Ot
avyi

To obtain the velocities at time t we first calculate the force at the new position:
fr(t + ot) = £ (R;(t + ot))
Substituting this expression in the Taylor expansion for the positions back in time from t + J't to t, we find

. o f(t+6t)
R;(t) = Ry(t + 6t) — R(t + 6t)dt + %m&g +0(t%)

Adding this expression to the forward expansion tto t + J't given above, we obtain the updated velocities at t + J't,

1

Ry (t+ 6t) = Ry(t) + 5o [f1(t) + 1(t + 6t)]ot + O(+)

trajectory.

