
Summary last lecture

2 Approximations to the full electron-nuclear Schrödinger equation:

• Born-Oppenheimer approximation: (i) electronic ground state only
(ii) mass nuclei >> mass electron

full electron-nuclear Schrödinger equation→ [T̂n(R) + E0
R]Φ(R) = EtotΦ(R) (1)

• Classical Approximation of nuclear motion: valid at high temperature, high mass of
nuclei

i~
∂

∂t
Φ(R, t) = [T̂n(R) + E0

R]Φ(R)→ fI = MIR̈I (2)

where fI =dpI/dt is the force on atom I , given by fI = −∂E0
R

∂RI
.

Solving Newton’s Equations of motion for molecular systems is generally referred to as
Molecular Dynamics (MD) simulation.

Time-stepping algorithms: Verlet, Velocity Verlet and Leap Frog
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Born-Oppenheimer Molecular Dynamics (BOMD)

Remember: to go from R(t)→ R(t + δt) we need the force fI(R(t))

In BOMD fI(R(t)) is obtained from static electronic structure calculations on the nuclear
configuration at time t, R′=R(t). How? Using the varational principle,

ER′ = min
{ΨR′}
〈ΨR′|Ĥe(R

′)|ΨR′〉 = 〈Ψ0
R′|Ĥe(R

′)|Ψ0
R′〉 (3)

Ĥe = T̂e(r) + Ven(R′, r) + Vee(r) + Vnn(R′). (4)

Note that Eq. 3 is equivalent with solving the ground state of the Schrödinger equation
ĤeΨ

0
R′ = E0

R′Ψ
0
R′.

The forces on the nuclei are equal to minus the gradient of the ground state energy with
respect to the nuclear coordinates,

fI(R
′) = −∇RI

〈Ψ0
R|Ĥe|Ψ0

R〉|R=R′. (5)
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Hellmann-Feynman theorem

The nuclear force on the electronic ground state potential energy surface reads:

fI(R
′) = −∇RI

〈Ψ0
R|Ĥe|Ψ0

R〉|R=R′. (6)

The force in Eq. 6 can be calculated using the Hellmann-Feynman theorem.

Consider
• a general Hamiltonian that depends on a parameter λ, Ĥ(λ)

• an eigenfunction of this Hamiltonian, Ψλ (not necessarily the ground state)

• the corresponding eigenvalue Eλ.

The Hellmann-Feynman theorem states that

d

dλ
〈Ψλ|Ĥ(λ)|Ψλ〉 = 〈Ψλ|

d

dλ
Ĥ(λ)|Ψλ〉 (7)
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Proof:

d

dλ
〈Ψλ|Ĥ(λ)|Ψλ〉 = 〈 d

dλ
Ψλ|Ĥ(λ)|Ψλ〉 + 〈Ψλ|Ĥ(λ)| d

dλ
Ψλ〉 (8)

+〈Ψλ|
d

dλ
Ĥ(λ)|Ψλ〉 (9)

= Eλ〈
d

dλ
Ψλ|Ψλ〉 + Eλ〈Ψλ|

d

dλ
Ψλ〉 (10)

+〈Ψλ|
d

dλ
Ĥ(λ)|Ψλ〉 (11)

= Eλ
d

dλ
〈Ψλ|Ψλ〉 + 〈Ψλ|

d

dλ
Ĥ(λ)|Ψλ〉 (12)

= 〈Ψλ|
d

dλ
Ĥ(λ)|Ψλ〉 (13)

Equation 13 follows from Eq. 12 because the norm of Ψλ is invariant with respect to a
change in λ, d

dλ〈Ψλ|Ψλ〉=0.

The Hellmann-Feynman theorem is valid for any Hamiltonian (incl. Hartree-Fock, Kohn-
Sham) as long as Ψλ is an exact eigenfunction of this Hamiltonian.
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Brief review: Kohn-Sham Density Functional Theory (KS-DFT)

• Electron density ρ(r) expressed in terms of KS-orbitals (φ1, . . . , φn):

ρ(r) =
∑
i

|φi|2, (14)

• Ground state Energy for a given nuclear configuration R′, EKS
R′ :

Minimize functional

ER′[ρ({φi})] = −1

2

∑
i

〈φi|∇2|φi〉 +

∫
drVen(R′)ρ(r) (15)

+
1

2

∫
dr1dr2

ρ(r1)ρ(r2)

r12
+ Exc[ρ] + Vnn(R′) (16)

with respect to all electron densities ρ integrating to N electrons,

EKS
R′ = min

ρ({φi})
ER′[ρ({φi})], (17)
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• EKS
R′ =E0

R′ if the exact exchange correlation functional (Exc) was known.

• Equivalently, minimization can be carried out wrt KS-orbitals

0 = − δ

δφ∗i
ER′ [ρ({φi})] +

∑
j

Λijφj ∀i, (18)

where Λij is a matrix of Lagrange undetermined multipliers.

• Equation 18 leads to the Kohn-Sham equations,

ĤKSφi(r) = εiφi(r). (19)
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BOMD using KS-DFT

Use KS-DFT as electronic structure method in BOMD.
• At each time step or nuclear configuration R′ solve for KS-orbitals and nuclear forces:

0 = − δ

δφ∗i
ER′ [ρ({φi})] +

∑
j

Λijφj (20)

fI(R
′) = −∇RI

min
ρ({φi})

ER[ρ({φi})]|R=R′ = −∇RI
〈ΨKS

R |ĤKS|ΨKS
R 〉|R=R′, (21)

where ΨKS
R is the KS determinant obtained from the KS-orbitals.

• Use Hellmann-Feynman theorem to calculate the force Eq. 21.
Identify λ with the coordinate of nucleus I , RI :

fI(R
′) = −∇RI

〈ΨKS
R |ĤKS|ΨKS

R 〉|R=R′ = −〈ΨKS
R |∇RI

ĤKS|ΨKS
R 〉|R=R′. (22)

→ fortunately, no need to calculate nuclear derivative of wavefunction :)

• Use force in one of the time stepping algorithms discussed to propagate nuclei.

Scheme is called density functional theory-based MD (DFT-MD) or ab-initio MD (AIMD).
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