Summary last lecture

2 Approximations to the full electron-nuclear Schrodinger equation:

e Born-Oppenheimer approximation: (i) electronic ground state only
(ii) mass nuclei >> mass electron

full electron-nuclear Schrodinger equation — [T,(R) + E%|P(R) = Ei®(R) (1)

e Classical Approximation of nuclear motion: valid at high temperature, high mass of

nuclei p
iho ®(R, 1) = T,(R) + EX]®(R) — f; = MR, (2)
0
where f;=dp;/dt is the force on atom I, given by f; = —g%‘.

Solving Newton’s Equations of motion for molecular systems is generally referred to as
Molecular Dynamics (MD) simulation.

Time-stepping algorithms: Verlet, Velocity Verlet and Leap Frog
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Born-Oppenheimer Molecular Dynamics (BOMD)

Remember: to go from R(t) — R(t + dt) we need the force f;(R(?))

In BOMD f;(R(t)) is obtained from static electronic structure calculations on the nuclear
configuration at time ¢, R'=R/(t). How? Using the varational principle,

Ep = {rgin}(\IJR/\er(R’)hIJR/} = (| Ho(R')[W},) (3)
R/
He = Tu(r) + V(R 1) + Vie(r) + Vi (R). (4)

Note that Eq. 3 1s equivalent with solving the ground state of the Schrodinger equation
He\IJORl/ — E](;){/\IJOR/

The forces on the nuclei are equal to minus the gradient of the ground state energy with
respect to the nuclear coordinates,

f/(R) = — Vi, (Vi |He| Vi) [rr (5)



Hellmann-Feynman theorem

The nuclear force on the electronic ground state potential energy surface reads:

f/(R) = —Vr, (Vi |He|Vp) [rr

The force in Eq. 6 can be calculated using the Hellmann-Feynman theorem.

Consider )
e a general Hamiltonian that depends on a parameter A\, H(\)

e an eigenfunction of this Hamiltonian, W) (not necessarily the ground state)

e the corresponding eigenvalue E)y.

The Hellmann-Feynman theorem states that

d : d
SO HNW5) = (W= HA)[¥))



Proof:
d d A d

d)\<‘IfA|H( )W) = <d)\‘PA|H( )W) + (A HA)[50) (8)
JF<\PA|— H(A)|Wy) 9)
= b <dd)\‘1’A\‘I’A> + EA(‘I’A|—\PA> (10)
Jr<\I’A|— 1(\)[ W) (11)
d d -
= EAdA<\P/\Mj/\> + (Ol H (V)P (12)
= <\D>\|ﬁ 1(A)[W)) (13)

Equation 13 follows from Eq 12 because the norm of W) is invariant with respect to a

change in A, (U, |¥)) =0

The Hellmann-Feynman theorem is valid for any Hamiltonian (incl. Hartree-Fock, Kohn-
Sham) as long as W) is an exact eigenfunction of this Hamiltonian.



Brief review: Kohn-Sham Density Functional Theory (KS-DFT)

e Electron density p(r) expressed in terms of KS-orbitals (¢1, ..., ¢,):
p<r> — Z ’¢i|27

e Ground state Energy for a given nuclear configuration R/, Eg,sz
Minimize functional

Enlpl{0:1)] = —3 3 (0V*1o) + [ deV(R)p(o

(4

1
‘1—5 / drldr2p<r1r)p(r2) + EXC[,O] + Vm(R’)
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with respect to all electron densities p integrating to /N electrons,

EXP = min Egs DI,
5 = min Bulo((0:))

(14)

(15)

(16)

(17)



e E57=EY, if the exact exchange correlation functional (Fy.) was known.

e Equivalently, minimization can be carried out wrt KS-orbitals

5;;ER,[ ({o:}) +ZAW¢3 Vi, (18)

where A;; is a matrix of Lagrange undetermined multlphers.

0=—

e FEquation 18 leads to the Kohn-Sham equations,
H"¢,(r) = e¢i(r). (19)



BOMD using KS-DFT

Use KS-DFT as electronic structure method in BOMD.
e At each time step or nuclear configuration R’ solve for KS-orbitals and nuclear forces:

0
0 = _5¢* p({oi}) +ZA2J¢J (20)
fi(R) = —Vr, min Eglp <{¢i}>”R:R’ = —Vr, (VR H R [rr, (21

where \Ifﬁs is the KS determinant obtained from the KS-orbitals.

e Use Hellmann-Feynman theorem to calculate the force Eq. 21,
Identify A with the coordinate of nucleus I, R;:

f/(R) = =Vr, (Vx| H VR [rr = — (V8| VR, H VR [Rewr: (22)

— fortunately, no need to calculate nuclear derivative of wavefunction :)

e Use force in one of the time stepping algorithms discussed to propagate nuclei.
Scheme is called density functional theory-based MD (DFT-MD) or ab-initio MD (AIMD).
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