Time averages

What one typically would like to do in a molecular dynamics simulation is to
compute the time average of some observable A that is a function of all classical
phase space variables R and p.

The phase space variables change in time, that is, along the MD trajectory, and
so does A. Moreover, the time evolution of A(t) will be different for different
trajectories, i.e. for different initial values of the phase space variables (R/(0),

p(0))
The time average of A over a continuous trajectory R(t) of finite length At
is given by
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Aar = — dtA(t).
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In practical calculations the trajectories are discrete and the continuous time
average . is approximated by the discrete time average,
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where At = Mot and 0t is the time step.



Microcanonical (NVE) Ensemble

Consider a large number of copies of an isolated system that all have the same
constant particle number N, constant volume V and constant total energy
E. The collection of states in phase space (R,p) that have the same total
energy F is called the microcanonical or NVE ensemble. One of the funda-
mental assumptions of statistical mechanics is that the probability of a state,
pnve(R, p) dRdp, is the same for all states of the NVE ensemble. The condi-
tion that only states of energy E are occupied and that all of them have the
same probabilty can be expressed in terms of a delta function ¢, which restricts
the manifold of accessible phase space points to a hypersurface of constant E
only.
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Here pxvg is the probability density, H = Zﬁvzl p?/(2M;) + ERr is the Hamil-
tonian, FR is the potential energy, h is Planck’s constant, and Qyyg is the
microcanonical partition function. The denominator of the probability den-
sity contains the partition function which normalizes the probability to unity,
[dRdp pxve = 1. It also contains the unit volume in phase space, h3V N,
which makes the probability dimensionless.



Ergodic Hypothesis

In order to obtain the average or the expectation value of an observable A(R, p)
in the NVE ensemble, (A)xvg, one has to integrate A over the phase space
variables, where each point in phase space is weighted with the probability

density PNVE-
(A)NvE = / dRdp pxve(R, p)A(R, p)

The ergodic hypothesis establishes a connection between the time averages
obtained from molecular dynamics and the ensemble averages used in statistical
mechanics. It states that for ergodic systems, the time average of an observable
A is equal to the ensemble average in the limit of an infinitely
long trajectory.

lim AAt — <A>NVE
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This means that the number of times a point in phase space is visited along
an (infinitely long) MD trajectory is proportional to its statistical weight in
the NVE ensemble. The equivalence of time and and ensemble averages is an
assumption valid for stable many-body systems. However, there are systems
for which this condition is not satisfied, such as glasses.

Schematic of constant
(total) energy surface in
phase space with chaotic
trajectory. At long times,
each point will be visited
an equal number of times,
according to the ergodic
hypothesis.



Canonical (NVT) Ensemble

Consider a large number of copies of a system that is connected to a heat
bath at temperature 7. All copies have the same constant particle number N,
constant volume V', but they can exchange heat with the bath and thus can
have a different total system energy E. The collection of these states is called
the canonical or NVT ensemble. From arguments based on the maximization
of possibilities to realize a given total energy Ei,t = E + E}.n, one can derive
that each state in the canonical ensemble has a probability density
( h3N N )—1

pxvr(R,p) = Twexp[—ﬁH(Rm)]

Onvr = (RPVN1)7! / dR dp exp[-SH(R, p)]

where f=1/(kgT) and kg is the Boltzmann constant. The distribution
is also called Boltzmann distribution, and Qv is the canonical partition func-
tion.

The expectation value for an observable A in the NVT ensemble is calculated
similarly as for the NVE ensemble | replacing pnve by the probability

density pxvyr
(A)xyt = /deP pnvt(R,p)AR, p)

There exists an ergodic hypothesis also for NVT ensem-
bles. However, before we state this explicitly we have to define temperature in
molecular dynamics simulation.



Temperature and kinetic energy

Temperature was introduced previously as a parameter in the exponent of the
canonical ensemble distribution function Comparison of the expres-
sions of state functions in statistical mechanics and classical thermodynamics
shows that the statistical temperature is indeed equivalent with the empirical
temperature measured in experiments.

One can easily show that in the canonical ensemble temperature is pro-
portional to the expectation value of the total kinetic energy. Insertion of

A= Z I=13 0 A I: we obtain
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where we have used f_o; dx 2* exp(—az?) = i\/ﬂ'/ a. Thus, temperature can
be defined by the average kinetic energy, which is perhaps a more intuitive
quantity than the ensemble distribution function.



Nose thermostat

The MD algorithms presented in the first lecture are numerical schemes that
solve Newton’s equation of motion. As the total energy is conserved during the
motion, Newton Dynamics samples the NVE ensemble (assuming ergodicity).
On the other hand, experiments are usually carried out at constant temperature.
Thus, in order to allow for a consistent comparison between simulation and
experiment, it would be desirable to carry out MD simulations in the NVT
ensemble. The famous Nosé constant temperature MD algorithm has been
developed for this purpose. In this method Newton’s equations are extended
by a friction term, i.e. a term proportional to the velocity, (RI,
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where ( is the friction constant, () is the fictitious mass and 7" is the target
temperature.



Nose thermostat (contd.)

During the dynamics defined in previous slide the total energy is not conserved

any more due to the dissipation of heat caused by the friction term. This can
2

be shown by taking the time derivative of the Hamiltonian H= Z?{:l ﬁ{g + Er

using the chain rule as before, and substituting p=M;R The result
1S
N
dH :
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The dissipation by the friction term can be positive or negative, thus leading
either to an accelaration or deccelaration of the particles in addition to the
accelaration or deccelaration due to the atomistic potential energy ER.

One can show that for { > 0 the total energy (potential + kinetic) decreases = COOLING
and that for { < 0 the total energy decreases = HEATING

Assuming that the Nose dynamics is ergodic, one can show that each point in phase space
is sampled according to the canonical probability distribution, that is, Nose dynamics samples

the NVT ensemble.

Schematic of constant
(total) energy surfaces in
phase space with chaotic
trajectory. At long times,
each surface will be visited
proportional to its
Boltzmann weight,
exp(-E;/kgT).



