
Classical approximation of nuclear motion - preliminary observations

Time-dependent version of SE for nuclei in BO approximation:

i~
∂

∂t
Φ(R, t) = [Tn(R) + ER]Φ(R) (1)

→ can be solved for only a small number of nuclei (5-10)

→ in many situations sufficient to treat nuclei classically.

Accuracy of classical approximation improves with

• increasing temperature

• increasing mass of nuclei

Worst case: Hydrogen bonded system at very low temperatures.
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Classical approximation of nuclear motion - outline of derivation

Classical, i.e. Newtonian dynamics, can be formally derived from Eq. 1.

1. Write Φ in polar representation:

Φ(R, t) = A(R, t) exp(iS(R, t)/~) (2)

A ∈ R > 0, S ∈ R.

2. Insertion of Eq. 2 in Eq. 1 and separation of real and imaginary parts:

∂S
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+
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2MI
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∑
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2MI

∇2
IA
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= 0 (3)

∂A

∂t
+
∑
I

1

MI
(∇IS) (∇IA) +

∑
I

1

2MI
A∇2

IS = 0 (4)

3. Take the limit ~→ 0 in Eq. 3:

∂S

∂t
+
∑
I

(∇IS)2

2MI
+ ER = 0 (5)

Notice, Eq. 5 is isomorph with the Hamilton-Jacobi Equation of classical mechanics.
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4. Correspondence with classical mechanics

Identify phase S(R, t) with classical action Scl(R, t).

Identify nuclear gradient of phase, ∇IS, with classical momentum, pI .

Eq. 5 becomes the Hamilton-Jacobi Equation of classical mechanics:

∂Scl

∂t
+
∑
I

p2
I

2MI
+ ER = 0 (6)

5. Hamilton and Newton equations of motion from Hamilton-Jacobi Equation

H =
∑
I

p2
I/(2MI) + ER (7)

ṘI = ∂H/∂pI (8)

ṗI = −∂H/∂RI (9)

Eq. 9 is Newton’s second law of motion,

fI = MIR̈I = −∇IER. (10)
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