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SCF convergence
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Solving the KS equations

Finding solutions of the Kohn-Sham equations is a chicken and egg
problem. (

−
 h2

2m
∇2 + vks (r)

)
φi (r) = εiφi (r) (1)

The Kohn-Sham potential vks depends on the density n (r). So if we find
the n (r) that minimises the energy for a particular vks (r), vks (r) will
change as a result.

We seek a self consistent value of n (r), such that the energy is
minimised and vks (r) remains unchanged.
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Self consistent field (SCF)
With the density n we can calculate the Hamiltonian Ĥ, and then solve to
get the density n.
Will the input and output densities be the same?

Hasnip, Phil. ”Bands-parallelism in Castep A dCSE Project.” (2008).
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Density mixing
The simplest approach is just to mix the input and output densities

nnew (r) =
1
2

[
ninput (r) + noutput (r)

]
(2)

Example of direct mixing for a 2x2x2 supercell of pristine MgO
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Density mixing
Not guaranteed to converge and doesn’t work for more complex
examples due to charge sloshing instabilities

nnew (r) =
1
2

[
ninput (r) + noutput (r)

]
(3)

Example of direct mixing for a 2x2x2 MgO containing a V+
O defect
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Density mixing
More complex mixing algorithms keep a record of all densities calculated
and mix many densities together. Broyden and Pulay mixing are the
most commonly used algorithms

Example of direct mixing for a 2x2x2 MgO containing a V+
O defect
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Smearing

n (r) =
∑

i

Oi (T ) |ψi |
2 (4)

If a band lies near to the Fermi level it can be fully occupied in one
iteration and fully deoccupied in the next, leading to quite unstable
behavior. This is always going to happen for metals

One solution is to allow partial occupancy of bands near the Fermi
level, normally using the Fermi-Dirac distribution to fill them

In this case, a temperature is used to define the distribution. This
isn’t a physical temperature, but represents a convergence
parameter where we are interested in the T → 0 limit

This can help with SCF convergence in other contexts e.g. when
there are degenerate levels which are not full
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Spin state
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Spin state
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Spin state
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Spin state
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Spin state
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Notes on spin

You should expect to get integer spin state. Fractional spin states
are most commonly seen when something is wrong

A DFT code will normally guess that systems with an even number
of electrons are singlets and that systems with odd numbers of
electrons are doublets

Although there are methods that will optimise the spin state, they
are not very good and normally get stuck on the initial guess. You
will normally need to try higher spin states by hand if you think they
might be lower in energy.
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One example
Both atomic and molecular oxygen have a triplet ground state
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An example with castep

PARAM FILE CELL FILE
task singlePoint %block lattice_abc

3.9992 3.9992 3.9992
charge 0.0 90 90 90

%endblock lattice_abc
spin_polarized True
spin 0.0 %block species_pot

F NCP
xc_functional pbe Li NCP

%endblock species_pot
cut_off_energy 800.0

%block positions_frac
elec_method dm F 0.5 0.5 0.5
mixing_scheme Broyden F 0.5 0.0 0.0

F 0.0 0.5 0.0
max_scf_cycles 100 F 0.0 0.0 0.5

Li 0.0 0.0 0.0
fix_occupancy False Li 0.0 0.5 0.5
smearing_scheme FermiDirac Li 0.5 0.0 0.5
smearing_width 300.0 K Li 0.5 0.5 0.0

%endblock positions_frac
elec_energy_tol 1e-10

kpoint_mp_grid 10 10 10
continuation Default symmetry_generate
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An example with castep
OUTPUT
***

Calculating total energy with cut -off of 800.000 eV.
------------------------------------------------------------------------ <-- SCF
SCF loop Energy Fermi Energy gain Timer <-- SCF

energy per atom (sec) <-- SCF
------------------------------------------------------------------------ <-- SCF
Initial -3.42723677E+003 0.00000000E+000 3.67 <-- SCF

1 -3.39578702E+003 -2.92342352E+000 -3.93121806E+000 3.92 <-- SCF
2 -3.39756307E+003 -2.90081175E+000 2.22006128E-001 4.13 <-- SCF
3 -3.39663167E+003 1.14915823E+000 -1.16425420E-001 4.42 <-- SCF
4 -3.39524930E+003 -3.15806975E-001 -1.72795993E-001 4.72 <-- SCF
5 -3.39531163E+003 -2.28144440E-001 7.79138978E-003 5.04 <-- SCF
6 -3.39531477E+003 -1.82010920E-001 3.91929501E-004 5.34 <-- SCF
7 -3.39531479E+003 -1.85547434E-001 2.74457074E-006 5.67 <-- SCF
8 -3.39531479E+003 -1.85890679E-001 4.91507229E-007 5.98 <-- SCF
9 -3.39531479E+003 -1.85836244E-001 3.19157996E-008 6.30 <-- SCF

10 -3.39531479E+003 -1.96826016E-001 1.11551466E-008 6.62 <-- SCF
11 -3.39531479E+003 -1.96808343E-001 7.25588684E-010 6.90 <-- SCF
12 -3.39531479E+003 -1.96810548E-001 9.64519125E-010 7.15 <-- SCF
13 -3.39531479E+003 -1.96812737E-001 5.11890224E-011 7.39 <-- SCF
14 -3.39531479E+003 -1.96810682E-001 1.78847387E-012 7.63 <-- SCF

------------------------------------------------------------------------ <-- SCF

Integrated Spin Density = 0.274386E-14 hbar/2
Integrated |Spin Density| = 0.143708E-05 hbar/2

Final energy , E = -3395.314791301 eV
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Geometry optimisation
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Geometry Optimisation
We can either calculate energies given input atomic positions, or we can
geometry optimise to find low energy structures

For a NaCl dimer , the only structural parameter is the separation. The
blue points are energy calculations for different separations, the green
diamond the result of a geometry optimisation. 20 / 42



Geometry Optimisation
Geometry optimisation only finds local minima, not global minima

21 / 42



Geometry Optimisation
These local minima can represent allotropes, which are stable. Carbon
serves as an example. A geometry optimisation would return these
structures, rather than find the global minimum (diamond)

Oganov, Artem R., et al. ”Structure, bonding, and mineralogy of carbon at extreme conditions.” Reviews in Mineralogy and

Geochemistry 75.1 (2013): 47-77. 22 / 42



Geometry optimisation methods

Conjugate gradient (CG) – very robust method that can be quite
slow

BFGS – Normally best method to use, quite robust and fast for most
problems

L-BFGS – Low memory version of BFGS that can be useful for
large systems

FIRE – More modern method, worth trying for difficult cases

Performance will depend on your application and it is worth testing if you
can speed a calculation up by changing algorithm.
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Types of geometry optimisation

Geometry optimisation – Minimise the total energy by moving
atoms and minimising forces

Cell optimisation – Minimise the stress tensor by modifying the
cell vectors (lengths and angles)

Both – Attempt both kinds of optimisation at the same time

Different DFT codes treat geometry optimisation and cell optimisation
differently, some will treat them as different types of calculation (cp2k)
and others as types of geometry optimisation (Castep)
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Comparison with experiment
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Comparison with experiment
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Exchange correlation
functionals
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Jacob’s ladder of DFT functionals

Perdew, John P., et al. ”Some fundamental issues in ground-state density functional theory: A guide for the perplexed.” Journal of

chemical theory and computation 5.4 (2009): 902-908.
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Local density approximation (LDA)
XC energy is locally approximated with the value of a homogeneous
electron gas of the same density. The computationally cheapest.

ELDA
x [n] = −

3
4

(
3
π

) 1
3
∫

n (r)
4
3 dr (5)

Only rung of the ladder that doesn’t include any empirical parameters
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GGAs

e.g. PBE, PW91, BLYP

EGGA
x = EGGA

x [n (r) ,∇n (r)] (6)

Negligible computational cost increase on LDA, but greater range of
available parameters

The PBE functional is generally considered to be the best general
purpose GGA

Other GGAs might be better for a specific purpose, but tend to be
weaker in other areas

There doesn’t appear to be much scope to make better GGAs (PBE
is from 1996)
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Meta-GGAs

e.g. TPSS, SCAN, M06-L

EmGGA
x = EmGGA

x
[
n (r) ,∇n (r) ,∇2n (r) , τ (r)

]
(7)

Quite small computational cost increase on GGA, but making
Meta-GGAs that are better than GGAs is incredibly hard. They are
often less transferable

Earlier attempts like the TPSS functional (2003) have not been
used much in practice

Newer options like M06-L (2006) and SCAN (2015) seem to be
more promising
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Hybrid functionals

Ehybrid
x = (a)EHF

x + (1 − a)EGGA
x [n (r) ,∇n (r)] (8)

e.g. PBE0, B3LYP, HSE

Use of non-local exchange term is extremely computationally
expensive. Essentially guaranteed to be the most expensive part of
the resultant DFT calculation

One important choice is how much non-local exchange to use

Functionals also differ in how they treat long range exchange

Started out as an empirical method, but now well justified through
the adiabatic connection theorem (e.g. see the hybrid functionals
section of this review
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.3)
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B3LYP

B3LYP is an empirical functional that has been fitted to reproduce
experimental atomisation energies, ionisation potentials, proton affinities
and atomic energies, for a test set of atoms and simple molecules.

EB3LYP
xc =ELDA

x + a0
(
EHF

x − ELDA
x

)
+ ax

(
EGGA

x − ELDA
x

)
(9)

+ELDA
c + ac

(
EGGA

c − ELDA
c

)
(10)

The fit parameters are a0=0.20, ax=0.72 and ac=0.81.

B3LYP is more reliable for lighter elements, as this was what it was
fit to

The most popular hybrid functional in Chemistry
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PBE0

The PBE0 functional uses 1
4 exact exchange, which is justified as

corresponding to MP4 theory.

EPBE0
xc =

1
4

EHF
x +

3
4

EPBE
x + EPBE

c (11)

Significantly more costly to apply to solids than B3LYP is to
molecules, as it it quite hard to converge with respect to k-points.
(B3LYP would have the same issue if it was applied to solids)

Probably the most popular hybrid functional in Physics
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HSE

The HSE functional is designed to be better behaved with respect to
k-point sampling. Long range exact exchange is turned off using the
parameter ω.

EHSE
xc =

1
4

EHF,SR
x (ω) +

3
4

EPBE,SR
x (ω) + EPBE,LR

x + EPBE
c (12)

The standard value of ω=0.2 is used. The functional would reduce
to PBE0 for ω=0

Screening exchange in this way reduces the computational cost
significantly for solids

Although motivated by computational arguments, HSE does appear
to outperform PBE0 for ‘typical semiconductors’
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Performance for solids

Zhang, Guo-Xu, et al. ”Performance of various density-functional approximations for cohesive properties of 64 bulk solids.” New

Journal of Physics 20.6 (2018): 063020.
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Performance for solids

Zhang, Guo-Xu, et al. ”Performance of various density-functional approximations for cohesive properties of 64 bulk solids.” New

Journal of Physics 20.6 (2018): 063020.
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Performance for solids

Heyd, Jochen, et al. ”Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid

functional.” The Journal of chemical physics 123.17 (2005): 174101.
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Performance for solids

Garza, Alejandro J., and Gustavo E. Scuseria. ”Predicting band gaps with hybrid density functionals.” The journal of physical

chemistry letters 7.20 (2016): 4165-4170.
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Hybrid exchange
The amount of exchange needed to describe a material seems to be
related to dielectric screening (itself a material specific property)

Skone, Jonathan H., Marco Govoni, and Giulia Galli. ”Self-consistent hybrid functional for condensed systems.” Physical Review B

89.19 (2014): 195112.
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Failures of XC functionals

You can’t mix and match XC functionals in a systematic way, so hard
to describe systems where different XC functionals are appropriate
(e.g. molecule on metal, metal/semiconductor interface)

Very poor description of long-range interactions, such as van der
Waals (empirical corrections e.g. D3)

Better at molecular binding energies (does chemical reaction
happen?) than barriers (how fast does chemical reaction happen?)

Routes to XC functional improvement seem to require calculations
to become really expensive (e.g. double hybrid)
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Conclusions

Density mixing is an important part of practical SCF calculations

Geometry optimisation can find local minima in the energy
landscape, which may or may not be the global minimum

Local functionals are computationally cheap and good for many
properties. Difficult to produce general purpose functionals better
than PBE

Hybrid functionals require significant computational resources, but
offer improved band gaps. However, there is a lot of flexibility in how
much exchange should be included
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