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Total energy
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The total energy in Kohn-Sham DFT is given as,

Etot =

∫
Ω

ρ (r) v (r) dr + Tks + EHar + Exc (1)

What does the exchange correlation energy Exc include?

1 Correction from the non-interacting Kohn-Sham kinetic energy Tks

to the true many-body kinetic energy

2 Removes the self interaction included in the Hartree energy EHar

3 Extra changes to the electron interaction due to changes to the
wavefunction

To evaluate this energy we need the Kohn-Sham orbitals, and a
definition for v (r).
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Interactions with ions

The atomic nuclei are included as point charges,

Etot =

∫
Ω

ρ (r) vions (r) dr + Tks + Exc + EHar + Eion−ion, (2)

The ions generate the external potential the atoms move in.

vions (r + R) =
∑

i

1
4πε∞

qi

ri
, (3)
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The interactions between the nuclei is calculated using Ewald
summation,

Eion−ion =
1
2

∑
I,J

ZIZJe2

{∑
i

erfc (η|rI + R − rJ |)

|rI + R − RJ |
−

2η
√
ρ
δIJ

+
4π
Ω

∑
G 6=0

1
|G|2

exp

(
−
|G|2

4η2

)
cos [(rI − rJ) · G] −

π

η2Ω

 ,

This is a combined realspace and reciprocal space expression.

A good derivation of this can be found at http:
//micro.stanford.edu/mediawiki/images/4/46/Ewald_notes.pdf
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DFT can be used to calculate the energy of a particular arrangement of
atoms, or to find the lowest energy arrangement of atoms:

1 The electron density ρ (r) that minimises the total energy for an
arrangement of atoms is found (SCF)

2 The force on each atomic nucleus is calculated for this electron
density (Hellmann–Feynman theorem)

3 The atomic nuclei are moved in response to these forces to try and
find a lower energy structure (Geometry optimisation)

4 Return to step 1 unless the required accuracy has been achieved

There are a few different algorithms available for steps 1 and 3.
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Planewaves as a basis
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The Kohn-Sham orbitals and their occupation define the density:

ρ (r) =
∑

occupied states

|ψn (r)|
2 (4)

We know that in the absence of interaction, electrons obey Bloch’s
theorem,

Bloch’s theorem

ψk (r) = Uk (r) exp (ik · r) (5)
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The periodic part of the wavefunction

We can choose plane waves as our basis for Uk (r),

Uk (r) =
∞∑
G

CG exp (iG · r) (6)

Our reciprocal lattice G has appeared again...

This time it is not related to k-point sampling
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The periodic part of the wavefunction

A complex exponent is periodic with period 2π

± exp (iθ) = cos (θ) + i sin (θ) (7)

Only reciprocal lattice points will fit into the unit cell,

G = NxGx + Ny Gy + Ny Gy (8)

Due to the relationship,

G · R = 2π (9)
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Example planewaves
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Example planewaves
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We can’t consider an infinite amount of planewaves, so we have to
truncate the expansion

Uk (r) =
|G|<Gmax∑

G

CG exp (iG · r) (10)

This is typically given as a cutoff energy,

Ecut =
 h2

2m
|Gmax|

2 (11)

This would be the kinetic energy of a basis function if it described an
electron in a non-interacting homogeneous electron gas.
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Energy cuttoff convergence
It is important to check that a high enough value of Ecut was used to
achieve the required accuracy.
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Total energy vs energy difference
Normally we are only interested in energy differences and these
converge faster
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Planewave DFT

These are some of the most popular DFT codes that use a planewave
basis
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Pros and cons of planewaves

Pros

Treat whole system uniformly
(non-biased)

Very computationally efficient
(FFT algorithm).

Mathematically well behaved
(Complete and orthonormal)

Easy to evaluate forces
(Hellmann–Feynman theorem)

Systematically improvable

Cons

Treat whole system uniformly
(wasteful)

Poor representation of atomic
core regions (requiring
pseudopotentials)

Does not scale well to
extremely large numbers of
atoms.
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Pseudopotentials
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The methods we’ve developed would
work, but they are still too

computationally demanding
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The periodic table

The periodic table organises elements by their chemical properties

The outer valance electrons dominate
chemistry
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Frozen core approximation
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Frozen core approximation

Don’t allow the core electrons to move in our calculation

Only explicitly include the valance electrons in the DFT calculation
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Types of DFT
There are two main types of DFT calculation in the literature,

All electron

All electron calculations treat every electrons in the system explicitly. As
a result the calculations are far more computationally demanding.

Pseudopotential

Some of the electrons are only included in the pseudopotential. We are
approximating that these electrons are frozen in place.

By definition, good pseudopotentials lead to the same results as all
electron calculations.
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Pseudopotential construction

Nucleus of the atom produces
a potential Vext in the DFT
calculation.

The electrons sit in orbitals
around the atomic nucleus.
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Pseudopotential construction

Nucleus of the atom produces
a potential Vext in the DFT
calculation.

The electrons sit in orbitals
around the atomic nucleus.

We seek a pseudopotential
VPP that essentially contains
the core elections too.

We define a cutoff radius rc

such that there is no difference
in electron density outside this.
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Pseudopotential construction

Pseudopotentials are constructed by doing an atomic calculation, once
with all electrons (AA) and once with the pseudopotential (PP). The PP
has to satisfy certain conditions,

The wavefunctions outside the cutoff should look identical

ψPP (r > rc) = ψ
AA (r > rc) (12)

The valance electron eigenvalues have to be the same

εPP
i = εAA

i (13)

The PP must also reproduce scattering properties of the atom.
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Pseudopotentials in action
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Beware of ghost states

Bad pseudopotentials can
fail and introduce “ghost
states” into calculations
that are non-physical

A good reason not to use new pseudopotentials
without testing, but well tested potentials won’t do this
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Pseudopotential jargon
There are many different ways of generating pseudopotentials

Hardness

Hard pseudopotentials require large planewave basis sets, but soft
pseudopotentials will still work with small basis sets.

Transferability

Transferable pseudopotentials work in many different chemical
environments.

Constructing pseudopotentials is a compromise between these two
properties.
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DFT delta project
This has been systematically checked by the delta project,
https://molmod.ugent.be/deltacodesdft

code Basis Electrons ∆ (meV/atom)
WIEN2K LAPW/APW+lo all-electron 0

FHI-AIMS teir2 numerical all-electron 0.2
EXCITING LAPW+xlo all-electron 0.2

ELK APW+lo all-electron 0.3
QUANTUM ESPRESSO planewave pseudopotential 0.3

VASP planewave pseudopotential 0.3
CASTEP planewave pseudopotential 0.4

With good pseudopotentials, these calculations can be essentially as
good as all electron calculations.
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Total energy

The expression for total energy is slightly modified by the use of
pseudopotentials,

Etot =

∫
ρ (r) vPP (r) dr + Tks + Exc + EHar + Eion−ion + ENC, (14)

The new energy term ENC is required, to allow for the fact that the
pseudopotentials are no longer point charges.
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Supercells
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1x1x1 conventional unit cell
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2x2x2 supercell
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3x3x3 supercell
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Supercell approach
When applied to fully periodic atomic structures (ideal crystals),
supercells provides another strategy for dealing with the quasiperiodicity
of Bloch waves.
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Supercells

The developed approach requires full lattice symmetry. But this doesn’t
stop us considering systems with less symmetry.

Then symmetry becomes an approximation that we force on the system.
We need to ensure that the results we calculate don’t depend on the
supercell size.
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Amorphous materials
Amorphous materials are highly disordered

They can be approximated by infinitely repeated disordered blocks
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Amorphous materials

The larger the block, the better the model

Models beyond a certain size will match the properties of the real
amorphous system
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Amorphous materials

Such models are generated using the “melt and quench” method

Models beyond a certian size will match the properties of the real
amorphous system
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Example application: Charged
defects
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Types of point defect
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1x1x1 defective unit cell
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2x2x2 defective supercell
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3x3x3 defective supercell
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Defect formation energy

Supercell size defines defect density.

The energy cost to form a neutral defect is

Ef = EDFT
defect − EDFT

bulk −
∑

i

niµi (15)

EDFT
defect : DFT energy of a supercell containing the defect

EDFT
bulk : DFT energy of a supercell of perfect crystal

µi : Atomic chemical potential of the element i .

ni : Number of atoms of element i exchanged.
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MgO F0 formation energy

We don’t need very large supercells for a neutral defect.
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Size convergence of defect formation energy

Studies of supercell size scaling
have suggested the following form
for cubic supercells1,

Ef (L) = Ef (∞) +
a1

L1 +
a2

L3

Example size convergence of the
V+2

C defect in diamond:
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1Castleton et al. Phys. Rev. B 73 035215 (2006)
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Charged defect formation energy

The energy cost to form a charged defect is

Ef = EDFT
defect − EDFT

bulk −
∑

i

niµi + Ecorr + q (µe + ∆V ) (16)

Ecorr : Correction for finite-size dependant electrostatics

µe : Chemical potential of electrons

µi : Correction to chemical potential of electrons, needed due to
neglect of the average potential
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Potential alignment, q∆V
In periodic DFT, the average value of the electrostatic potential V can’t
be calculated and is conventionally set to zero,

〈V (r)〉 = 0
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MgO bulk
Supercell size convergence of the +2 Oxygen vacancy in MgO
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Work function
Another example of this average potential problem is in the calculation of
work-functions

57 / 58



Conclusions

We can use a planewave basis and pseudopotentials to simulate
real materials

It is important to converge these calculations with respect to the
planewave cutoff energy and the k-space sampling.

Pseudopotentials allow a significant reduction in computational
cost, but should always be checked carefully.

Periodic DFT formalism can be used to study non-periodic systems
(such as surfaces and defects) but care must be used to ensure that
the size of the supercell doesn’t introduce errors.
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