

Lecture 3 – Density Functional Theory for Solids

Thomas Durrant (thomas.durrant.14@ucl.ac.uk)

TYC Materials Modeling Course

How can we use DFT to simulate materials?

- **1964** Inhomogeneous electron gas, P. Hohenberg and W. Kohn, *Phys. Rev.*
- As we saw in the last lecture, we can use density functional theory to solve many electron problems.

How can we use DFT to simulate materials?

1964 Inhomogeneous electron gas, P. Hohenberg and W. Kohn, *Phys. Rev.*

As we saw in the last lecture, we can use density functional theory to solve many electron problems.

1979 Momentum-space formalism for the total energy of solids, J. Ihm, A. Zunger, M. L. Cohen, *J. Phys. Condens. Matter*

It took 15 years to work out how to use computers to do DFT calculations for solids.

Overview

Crystallography

Bloch's theorem

Bandstructure

Crystallography

What are crystals?

In crystals, the atoms form a pattern that is infinitely repeated.

What are crystals?

In crystals, the atoms form a pattern that is infinitely repeated.

The unit cell

- One unit cell represents the whole infinite crystal.
- Unit cells are not unique (could use a smaller or larger cell)
- If we calculate a property everywhere in the unit cell, we know its value everywhere in the infinite crystal.
- Larger cells are more expensive computationally

The cell vectors

- The shape of the cell is defined by its cell vectors (a, b, c).
- If we move an integer number of lattice vectors we end up where we started (just in anther cell)

Let us define
$$\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$$

Bravais lattices

Given our definition $\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$, how many unique 3D patterns can we make?

Bravais lattices

Given our definition $\mathbf{R} = n_a \mathbf{a} + n_b \mathbf{b} + n_c \mathbf{c}$, how many unique 3D patterns can we make?

Only 14, the 3D Bravais lattices.

Bravais lattices

The three simplest Bravais lattices are:

Simple cubic (SC)

Body centered cubic (BCC)

Face centered cubic (FCC)

These cubic cells have *a*=*b*=*c*

Crystal structure

crystal structure = lattice + motif

Lattice - the shape and size of the unit cell

Motif - the atoms within the unit cell

Some example crystal structures

Bloch's theorem

A periodic potential

In a crystal, the potential generated by the atoms will be periodic:

Periodic potential $V\left(\mathbf{r}+\mathbf{R}\right)=V\left(\mathbf{r}\right)$

Adding any possible **R** doesn't change the value of V. This is the case for all observables of the system.

UCL

Bloch's theorem

Bloch proved that solutions of the Schrödinger equation in a periodic potential are only "quasi-periodic", with the following form,

Bloch's theorem

$$\psi_k(\mathbf{r}) = U_k(\mathbf{r}) \exp\left(i\mathbf{k}\cdot\mathbf{r}\right) \tag{1}$$

The wavefunction does contain a periodic part,

$$U_{k}\left(\mathbf{r}\right) = U_{k}\left(\mathbf{r} + \mathbf{R}\right) \tag{2}$$

And a non-periodic part,

$$\exp\left(i\mathbf{k}\cdot\mathbf{r}\right) \tag{3}$$

Consider the Schrödinger equation,

$$\hat{H}(\mathbf{r})\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$$
 (4)

Consider the Schrödinger equation,

$$\hat{H}(\mathbf{r})\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$$
 (4)

How does $\hat{H}(\mathbf{r})$ change as we add **R**?

$$\hat{H}(\mathbf{r} + \mathbf{R}) = -\frac{\hbar^2}{2m} \nabla_{\mathbf{r} + \mathbf{R}}^2 + V(\mathbf{r} + \mathbf{R})$$
(5)

We can see that the Hamiltonian operator is a periodic operator too,

$$\therefore \hat{H}(\mathbf{r} + \mathbf{R}) \equiv \hat{H}(\mathbf{r})$$
(6)

As both ψ (**r**) and ψ (**r** + **R**) are solutions of exactly the same equation, they can only differ by a multiple,

$$\psi(\mathbf{r}) = \zeta(\mathbf{R})\psi(\mathbf{r} + \mathbf{R})$$
(7)

Also, we know that both wavefunctions have to be normalised,

1

$$\left|\zeta\left(\mathbf{R}\right)\right|^{2}=1$$
(8)

Complex maths (the Euler identity) tells us that the solution of this is,

$$\zeta(\mathbf{R}) = \exp\left[i\chi(\mathbf{R})\right] \tag{9}$$

We can consider adding $\mathbf{R} + \mathbf{R}'$ as well. We have to get the same answer if we add the whole vector at once, or do it in steps. Hence,

$$\zeta \left(\mathbf{R} + \mathbf{R}' \right) = \zeta \left(\mathbf{R} \right) \zeta \left(\mathbf{R}' \right)$$
(10)

The equation above is a linear equation, which has only one possible solution

$$\chi(\mathbf{r} + \mathbf{R}) = \mathbf{k} \cdot \mathbf{R} \tag{11}$$

where k is an arbitrary vector in the reciprocal space. All together, this means,

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\mathbf{R}}\psi(\mathbf{r})$$
(12)

This directly implies the required result.

Reciprocal Brillouin zone

What values can this *K*-vector we have introduced through Bloch's theorem have?

Bloch's theorem

$$\psi_{k}(\mathbf{r}) = U_{k}(\mathbf{r}) \exp\left(i\mathbf{k}\cdot\mathbf{r}\right)$$
(13)

This complex exponent is itself a periodic function

$$\pm \exp i\theta = \cos(\theta) \pm i\sin(\theta) \tag{14}$$

So,

$$\exp\left(\theta + 2\pi\right) = \exp\left(\theta\right) \tag{15}$$

Reciprocal Brillouin zone

The maths is a bit more complex in 3D, but we end up with three reciprocal lattice vectors.

$$\mathbf{G}_{x} = 2\pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})} \tag{16}$$

$$\mathbf{G}_{y} = 2\pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})} \tag{17}$$

$$\mathbf{G}_{z} = 2\pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}$$
(18)

Our Bloch wave is identical for k values that have this periodicity.

$$\psi_k \left(\mathbf{r}, \mathbf{k} + \mathbf{G} \right) = \psi_k \left(\mathbf{r}, \mathbf{k} \right)$$
(19)

Most important property of these definition is that as realspace unit cell gets larger, the reciprocal unit cell gets smaller.

Reciprocal Brillouin zone - SC

The reciprocal lattice of a simple cubic lattice is also a simple cubic lattice.

Reciprocal Brillouin zone - FCC

The reciprocal lattice of a face centered cubic lattice is a body centered cubic lattice.

Reciprocal Brillouin zone - BCC

The reciprocal lattice of a body centered cubic lattice is a face centered cubic lattice.

What does this mean?

So what does all this abstract maths tell us about quantum systems?

$$E = \int_{\Omega} \psi^* \hat{H} \psi d\Omega = \int_{\Omega} \psi^* \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) d\Omega \qquad (20)$$

Let's consider two extreme limits:

- Potential energy dominated
- 2 Kinetic energy dominated

Real examples are going to be somewhere in the middle.

Potential energy dominated

Let $\hat{H}(\mathbf{r}) = V(\mathbf{r})$ and remember Bloch's theorem:

Bloch's theorem

$$\psi_k(\mathbf{r}) = U_k(\mathbf{r}) \exp(i\mathbf{k} \cdot \mathbf{r})$$
(21)

Potential energy dominated

Let $\hat{H}(\mathbf{r}) = V(\mathbf{r})$ and remember Bloch's theorem:

Bloch's theorem

$$\psi_k(\mathbf{r}) = U_k(\mathbf{r}) \exp\left(i\mathbf{k}\cdot\mathbf{r}\right)$$
(21)

Consider,

$$E = \int_{\Omega} \psi^* (\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r}) d\Omega \qquad (22)$$
$$= \int_{\Omega} V(\mathbf{r}) |\psi(\mathbf{r})|^2 d\Omega \qquad (23)$$

Potential energy dominated

$$E = \int_{\Omega} V(\mathbf{r}) |v_{k}(\mathbf{r})|^{2} \exp(i\mathbf{k} \cdot \mathbf{r}) \exp(-i\mathbf{k} \cdot \mathbf{r}) d\Omega \qquad (24)$$
$$= \int_{\Omega} V(\mathbf{r}) |V_{K}(\mathbf{r})|^{2} \exp 1 d\Omega \qquad (25)$$
$$= \int_{\Omega} V(\mathbf{r}) |V_{K}(\mathbf{r})|^{2} d\Omega \qquad (26)$$

so the energy has no k-dependence in this case!

Example: Isolated Hydrogen

If we looked at isolated hydrogen in a periodic DFT code, we would see this absence of \mathbf{k} -dependence:

For systems like this, **k**-space isn't adding anything to the description.

Kinetic energy dominated

For the opposite case, we set $V(\mathbf{r}) = 0$, ie free electron

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 \tag{27}$$

Kinetic energy dominated

For the opposite case, we set $V(\mathbf{r}) = 0$, ie free electron

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 \tag{27}$$

So consider,

$$\nabla^{2} \boldsymbol{\psi} \left(\mathbf{r} \right) = \nabla^{2} \boldsymbol{v}_{k} \exp\left(i \left(\mathbf{k} + \mathbf{G} \right) \cdot \mathbf{r} \right)$$
(28)

$$= -\left(\mathbf{k} + \mathbf{G}\right)^{2} v_{k}\left(\mathbf{r}\right) \tag{29}$$

Kinetic energy dominated

In terms of energy,

$$E = -\frac{\hbar^2}{2m} \int_{\Omega} \psi^* (\mathbf{r}) \nabla^2 \psi (\mathbf{r}) d\Omega \qquad (30)$$
$$= \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 \int_{\Omega} U_k^* (\mathbf{r}) U_k (\mathbf{r}) d\Omega \qquad (31)$$
$$= \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 \qquad (32)$$

We have a parabolic ${\bf k}\mbox{-}{\rm point}$ dependence, around each reciprocal lattice vector.

We have a parabola centered on the Γ -point.

But there is also a parabola centered on each reciprocal lattice point.

But there is also a parabola centered on each reciprocal lattice point.

All unique information can be contained in the 1st Brillouin zone.

Real example: MgO

This is the LDA bandstructure of MgO.

Real example: MgO

There are forbidden energy regions, called band gaps.

Real example: MgO

The most important parameter is the band gap.

The band gap

Size of the band gap tells us what kind of material we have.

The bandstructure

The conduction band and valance band are the most important.

The bandstructure

The curvature of the conduction band and valance band is related to how easily charge can flow through them (i.e. how good a conductor the material is.)

$$E(\mathbf{r}) = \frac{\hbar^2 k^2}{2m^*} \tag{33}$$

Effective mass

For semiconductors the effective mass is often lower than one.

m^*	Ge	Si	GaAs
Electrons	0.55 <i>m_e</i>	1.1 <i>m</i> e	0.067 <i>m_e</i>
Holes	0.37 m _e	0.56 <i>m_e</i>	0.48 <i>m_e</i>

Easier to move electrons in a semiconductor with an electric field than in free space!

Type of band gap

If the band gap is direct or indirect tells us about the interaction of the material with light.

k-point sampling

Rather than calculating the wavefunction ψ for every value of **k**, we just pick some **k**-points and average over them.

The simplest (and most common choice) is to uniformly sample the reciprocal Brillouin zone.

This is called Mohnhorst-Pack sampling.

k-point sampling

The simplest thing we can do is to use only one k-point.

- As the reciprocal Brillouin zone is smaller the larger the unit cell is, this will only work for large unit cells.
- However, this makes calculations a lot cheaper because the wavefunction becomes real everywhere.
- A downside is that we don't know the bandstructure

This is called Γ -point sampling.

k-point convergence

It is always important to check that enough k-points where used to calculate a good average.

This is the energy dependence on ${\bf k}\mbox{-}{\rm point}$ sampling for a unit cell of diamond.

How many k-points? As a (very) rough guideline less

~ 1 Low symmetry systems (atoms, molecules)

 \sim 100 Semiconductors, insulators

 ~ 1000 Metals

more

Conclusions

- The solutions of the Schrödinger equation in a periodic potential (a crystal) are Bloch waves.
- These Bloch waves introduce k-point dependence and bandstructure for materials.
- Practical DFT calculations always need enough k-points to well reproduce the material being studied.

