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How can we use DFT to simulate materials?

1964 Inhomogeneous electron gas, P. Hohenberg and W. Kohn,
Phys. Rev.

As we saw in the last lecture, we can use density functional theory to
solve many electron problems.

1979 Momentum-space formalism for the total energy of solids, J.
Ihm, A. Zunger, M. L. Cohen, J. Phys. Condens. Matter

It took 15 years to work out how to use computers to do DFT
calculations for solids.
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Overview

1 Crystallography

2 Bloch’s theorem

3 Bandstructure
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Crystallography
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What are crystals?
In crystals, the atoms form a pattern that is infinitely repeated.

Figure 1: Caption
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What are crystals?
In crystals, the atoms form a pattern that is infinitely repeated.

Figure 2: Caption
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The unit cell

One unit cell represents the whole
infinite crystal.

Unit cells are not unique (could use a
smaller or larger cell)

If we calculate a property everywhere
in the unit cell, we know its value
everywhere in the infinite crystal.

Larger cells are more expensive
computationally
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The cell vectors

The shape of the cell is defined by its
cell vectors (a,b, c).

If we move an integer number of lattice
vectors we end up where we started
(just in anther cell)

Let us define R = naa + nbb + ncc
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Bravais lattices

Given our definition R = naa + nbb + ncc, how many unique 3D patterns
can we make?

Only 14, the 3D Bravais lattices.
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Bravais lattices

The three simplest Bravais lattices are:

Simple cubic (SC)
Body centered cubic
(BCC)

Face centered cubic
(FCC)

These cubic cells have a=b=c
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Crystal structure

crystal structure = lattice + motif

Lattice – the shape and size of the unit cell

Motif – the atoms within the unit cell
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Some example crystal structures
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Bloch’s theorem
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A periodic potential

In a crystal, the potential generated by the atoms will be periodic:

Periodic potential

V (r + R) = V (r)

Adding any possible R doesn’t change the value of V . This is the case
for all observables of the system.
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Bloch’s theorem
Bloch proved that solutions of the Schrödinger equation in a periodic
potential are only “quasi-periodic”, with the following form,

Bloch’s theorem

ψk (r) = Uk (r) exp (ik · r) (1)

The wavefunction does contain a periodic part,

Uk (r) = Uk (r + R) (2)

And a non-periodic part,
exp (ik · r) (3)
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Proof of Bloch’s theorem
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Proof of Bloch’s theorem

Consider the Schrödinger equation,

Ĥ (r)ψ (r) = εψ (r) (4)

How does Ĥ (r) change as we add R?

Ĥ (r + R) = −
 h2

2m
∇2

r+R + V (r + R) (5)

We can see that the Hamiltonian operator is a periodic operator too,

∴ Ĥ (r + R) ≡ Ĥ (r) (6)
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Proof of Bloch’s theorem

As both ψ (r) and ψ (r + R) are solutions of exactly the same equation,
they can only differ by a multiple,

ψ (r) = ζ (R)ψ (r + R) (7)

Also, we know that both wavefunctions have to be normalised,

|ζ (R)|2 = 1 (8)

Complex maths (the Euler identity) tells us that the solution of this is,

ζ (R) = exp [iχ (R)] (9)
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Proof of Bloch’s theorem

We can consider adding R + R′ as well. We have to get the same
answer if we add the whole vector at once, or do it in steps. Hence,

ζ
(
R + R′

)
= ζ (R) ζ

(
R′
)

(10)

The equation above is a linear equation, which has only one possible
solution

χ (r + R) = k · R (11)

where k is an arbitrary vector in the reciprocal space. All together, this
means,

ψ (r + R) = eikRψ (r) (12)

This directly implies the required result.
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Reciprocal Brillouin zone

What values can this K -vector we have introduced through Bloch’s
theorem have?

Bloch’s theorem

ψk (r) = Uk (r) exp (ik · r) (13)

This complex exponent is itself a periodic function

± exp iθ = cos (θ)± i sin (θ) (14)

So,

exp (θ+ 2π) = exp (θ) (15)
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Reciprocal Brillouin zone
The maths is a bit more complex in 3D, but we end up with three
reciprocal lattice vectors.

Gx = 2π
b× c

a · (b× c)
(16)

Gy = 2π
c× a

b · (c× a)
(17)

Gz = 2π
a× b

c · (a× b)
(18)

Our Bloch wave is identical for k values that have this periodicity.

ψk (r, k + G) = ψk (r, k) (19)

Most important property of these definition is that as realspace unit cell
gets larger, the reciprocal unit cell gets smaller.
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Reciprocal Brillouin zone - SC

The reciprocal lattice of a simple cubic lattice is also a simple cubic
lattice.
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Reciprocal Brillouin zone - FCC

The reciprocal lattice of a face centered cubic lattice is a body centered
cubic lattice.
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Reciprocal Brillouin zone - BCC

The reciprocal lattice of a body centered cubic lattice is a face centered
cubic lattice.
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What does this mean?

So what does all this abstract maths tell us about quantum systems?

E =

∫
Ω

ψ∗ĤψdΩ =

∫
Ω

ψ∗
[
−

 h2

2m
∇2 + V (r)

]
ψ (r) dΩ (20)

Let’s consider two extreme limits:

1 Potential energy dominated

2 Kinetic energy dominated

Real examples are going to be somewhere in the middle.
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Potential energy dominated

Let Ĥ (r) = V (r) and remember Bloch’s theorem:

Bloch’s theorem

ψk (r) = Uk (r) exp (ik · r) (21)

Consider,

E =

∫
Ω

ψ∗ (r)V (r)ψ (r) dΩ (22)

=

∫
Ω

V (r) |ψ (r) |2dΩ (23)
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Potential energy dominated

E =

∫
Ω

V (r) |vk (r) |2 exp (ik · r) exp (−ik · r)dΩ (24)

=

∫
Ω

V (r) |VK (r) |2 exp 1dΩ (25)

=

∫
Ω

V (r) |VK (r) |2dΩ (26)

so the energy has no k-dependence in this case!
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Example: Isolated Hydrogen
If we looked at isolated hydrogen in a periodic DFT code, we would see
this absence of k-dependence:

For systems like this, k-space isn’t adding anything to the description.
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Kinetic energy dominated

For the opposite case, we set V (r) = 0, ie free electron

Ĥ = −
 h2

2m
∇2 (27)

So consider,

∇2ψ (r) = ∇2vk exp (i (k + G) · r) (28)

= −(k + G)2 vk (r) (29)
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Kinetic energy dominated

In terms of energy,

E = −
 h2

2m

∫
Ω

ψ∗ (r)∇2ψ (r) dΩ (30)

=
 h2

2m
(k + G)2

∫
Ω

U∗k (r)Uk (r) dΩ (31)

=
 h2

2m
(k + G)2 (32)

We have a parabolic k-point dependence, around each reciprocal lattice
vector.
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Free electron gas
We have a parabola centered on the Γ -point.
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Free electron gas
But there is also a parabola centered on each reciprocal lattice point.
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Free electron gas
But there is also a parabola centered on each reciprocal lattice point.
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Free electron gas
All unique information can be contained in the 1st Brillouin zone.
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Real example: MgO

This is the LDA bandstructure of MgO.
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Real example: MgO

There are forbidden energy regions, called band gaps.
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Real example: MgO

The most important parameter is the band gap.
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The band gap

Size of the band gap tells us what kind of material we have.
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The bandstructure
The conduction band and valance band are the most important.

39 / 48



The bandstructure
The curvature of the conduction band and valance band is related to
how easily charge can flow through them (i.e. how good a conductor the
material is.)

E (r) =
 h2k2

2m∗
(33)
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Effective mass

For semiconductors the effective mass is often lower than one.

m∗ Ge Si GaAs
Electrons 0.55 me 1.1 me 0.067 me

Holes 0.37 me 0.56 me 0.48 me

Easier to move electrons in a semiconductor with an electric field than in
free space!
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Type of band gap

If the band gap is direct or indirect tells us about the interaction of the
material with light.
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k-point sampling

Rather than calculating the wavefunction ψ for every value of k, we just
pick some k-points and average over them.

6×6×6 7×7×7 8×8×8 9×9×9

The simplest (and most common choice) is to uniformly sample the
reciprocal Brillouin zone.

This is called Mohnhorst-Pack sampling.
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k-point sampling

The simplest thing we can do is to use only one k-point.

As the reciprocal Brillouin zone is
smaller the larger the unit cell is, this
will only work for large unit cells.

However, this makes calculations a lot
cheaper because the wavefunction
becomes real everywhere.

A downside is that we don’t know the
bandstructure

This is called Γ -point sampling.
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k-point convergence
It is always important to check that enough k-points where used to
calculate a good average.

This is the energy dependence on k-point sampling for a unit cell of
diamond.
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How many k-points?
As a (very) rough guideline

less

more

∼ 1
Low symmetry systems
(atoms, molecules)

∼ 100
Semiconductors, insulators

∼ 1000
Metals
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Conclusions

The solutions of the Schrödinger equation in a periodic potential (a
crystal) are Bloch waves.

These Bloch waves introduce k-point dependence and
bandstructure for materials.

Practical DFT calculations always need enough k-points to well
reproduce the material being studied.
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