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The ultimate goal:

Solve the Schrödinger equation

or

for a many-electron system,

possibly a crystalline solid described under PBC.

Impossible without approximations:

Born-Oppenheimer

Mean field (independent particles): HF and KS-DFT



1-electron Hamiltonian

Mean field: replace 1/rij with v(xi) – average field created 

by all other electrons on the reference i-th electron

Solutions (eigenstates) of the 1-electron Hamiltonian describe 

1-electron states of the system (orbitals): (xi) 



N-electron state = product of N occupied 1-electron states

Built into Slater determinant to satisfy Fermi

statistics (wavefunction antisymmetric for exchange of 2 e)

This leads to calculated energy

The HF solution: N-e wavefunction



Includes complex many-centre integrals:

One-electron: kinetic energy and e-nuclei Coulomb

Two-electron: e-e Coulomb and exchange

and 1e 2e



Fictitious system of independent electrons

1-electron states of the system (orbitals): (xi) 

Used only to calculate the total density

The Kohn-Sham DFT solution: N-e density

Energy is a functional of the total electron density

Approximations hidden in the exchange and correlation (xc)

functional
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Wavefunction must satisfy Bloch’s theorem.

In a periodic potential u(r) = u(r+R) the eigenstates of H

are the product of a function with same periodicity R, 

modulated by a wave of vector k

Periodic Boundary Conditions

The wavefunction is also periodic



The HF or KS expressions remain abstract

To evaluate the properties of a system we must have a 

numerical expression of orbitals/wavefunction/density

Expand them in a series of functions  that describe 

the cartesian space (x,y,z) where electrons reside 

Hilbert space

Why a basis set?

Ideally a complete basis set: 

no constraint imposed on shape of 1e states

But this means infinite → new approximations



Compromise between accuracy and cost

- Makes chemical sense: good solution with few functions

- Makes mathematical sense: all HF or DFT expressions

easy to calculate:

2-e integrals in HF (4 centres)

and DFT (2 centres)

Which functional form?
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Refer to solutions of H atom (1e system), the only 

system known exactly. 

Exact solutions are the Slater orbitals:

Exponential decay from nucleus e-r

Chemical choice 1: STO

But!

Many centre integrals

are non analytical

→ Few functions,

Complex maths

Numerical integration



Replace Slater orbitals with Gaussian functions:  e-ar^2

Analytical integrals, but cusp on nucleus not reproduced

Compromise: use “contraction” (linear combination) of

several Gaussian functions (primitives) → STO-nG

Chemical choice 2: GTO, STO-nG

Cusp more critical for core 

electrons

Number of contracted 

Gaussians varies with 

principal quantum number

STO-nG = σ𝑖=1
𝑛 𝑐𝑖 exp(−𝑎𝑖 𝑟2)



Assume that STOs and their mimic STO-nG are still a

good representation for the many electron system; AOs.

Molecular or crystalline orbitals obtained as LCAOs.

Few AOs often enough for accurate representation of 

molecular/crystalline electronic states

Must have (variational) 

flexibility in describing 

electronic redistribution 

in molecule/solid.

Chemical choice 3: MO-LCAO



Associated with atoms (can be expanded, e.g. bonds/vacancies)

Minimal: 1 basis function for each occupied AO in the atom

Double zeta: 2 basis functions for each AO

Triple zeta: 3 basis functions for each AO

Quadruple (QZ), 5Z, 6Z etc

Having differently sized functions allows MOs (COs) to get

bigger/smaller in response to chemical changes.

Better variational flexibility.

Split valence: 2 basis functions for valence AOs only.

Core orbitals described by 1 function only

Triple valence: 3 basis fcts for valence AOs, 1 for core.

Electronic redistribution more pronounced for valence e-

less so for core states (changes in core described by valence AOs)

Hierarchy of STOs



Examples

H atom, Minimal BS: 1 AO (1s)

C,N,O atom, Minimal BS: 5 AO (1s, 2s, 2px,y,z)

C,N,O atom, Double zeta: 10 AO (2*(1s, 2s, 2px,y,z))

C,N,O atom, Split valence: 9 AO (1s, +2*(2s, 2px,y,z))

“manageable numbers”

O(100) atoms system ~ O(1000) AOs

For STO-nG we count the contracted STOs, 

not the primitive Gaussian functions (coefficients ci

do not change)

Hierarchy of STOs

STO-nG = σ𝑖=1
𝑛 𝑐𝑖 exp(−𝑎𝑖 𝑟2)



Polarisation functions:

AOs with angular momentum l higher than highest occupied

in the atomic configuration, e.g. p AOs for H, d AOs for O etc 

Allow atomic density to deform in the molecular/crystalline

field. Indicated with star (*) in the BS acronym

Diffused functions: 

Gaussians with very low exponent (a < 0.05)

Describe slow decay of wavefunction away from nucleus

(STO varies more slowly than GTO). E.g. anions.

Indicated with plus (+) in the BS acronym.

Hierarchy of STOs

+ p → polarised solution s



From ppt by C.D. Sherrill, “Basis sets in quantum chemistry” 



From ppt by C.D. Sherrill, “Basis sets in quantum chemistry” 



Can use contractions of different size for core and 

valence electrons

X: indicates number of primitive Gaussians for core AOs

Y: nr primitive G’ for inner valence AOs

Z: nr primitive G’ for inner valence AOs

* for polarisation functions 

(sometimes ** to differentiate H from heavy atoms)

+ for diffused functions

First systematic BS proposed by John Pople (Nobel prize 1998)

e.g. STO-3G, 6-31G, 6-311G** or 6-311G(d,p) 

STO People’s Notation: X-YZ G (+*)

Split valence BS



l primitive s functions, contracted into x AOs of s type

m primitive p functions, contracted into y AOs of p type, etc

e.g. People’s 6-311G(d,p) for C:

6+3+1+1 primitive s functions, contracted into 4

3+1+1                    p                                          3

1                            d                                          1 (polarisation)

Indicated as (11s,5p,1d)/[4s,3p,1d]

STO Dunning’s Notation: (Is,mp,nd)/[xs,yp,zd]



Once a basis set  is chosen, the Schrödinger eqn can be

expressed in matrix form

Matrix notation

Multiply by * and integrate: 



AO-like basis sets  are not orthonormal

Overlap matrix S  I 

Solution requires to invert S

Matrix notation



1. Over-complete – convergence to full basis set limit

is unclear

Adding a new basis function does not always

improve quality of results

2. Balance – similar quality for all atoms of the system

3. For large basis sets we can have linear dependencies

4. Basis set superposition error (BSSE)

Interaction between sub-systems A+B overestimated

basis set of (A+B) better than that of A and B isolated

5. Best choice of basis set of given size is not unique

Many careers devoted to basis set development

Limitations of local basis sets



Depends on property. Example energy and geometry of

diatomic molecules in HF calculations

Convergence of calculated properties vs basis set

Excited states, derivatives of E or  (e.g. polarizability),

correlation, more difficult to converge 



1. Avoid diffused functions (exponent < 0.1)

Needed in molecules to describe decay of density/WF

no “outer space” in crystals

Local basis sets for crystalline solids

molecule crystal (no point far from one atom)

cooperative effects

Numerical instability: when exponent → 0 

overlap from neighbouring atoms is similar; |S| → 0

Solution requires to invert S



AOs do not satisfy Bloch’s theorem. 

Build Bloch fcts as Fourier transform of the AOs

Local basis sets for crystalline solids

Rn = lattice vector; i = i-th AO in the cell centred in ri

Bloch fcts {i} extend over infinite lattice described by PBC

Hamiltonian depends on k

𝐹 𝑘 𝐶(𝑘) = 𝑆 𝑘 𝐶(𝑘) (k)𝐹𝐶 = 𝑆𝐶



Resolve most issues of local basis sets:

- Orthonormal (no need to invert S)

adding new PWs systematically improves solution

K is an energy → energy cutoff (reciprocal lattice points K)

- Satisfy Bloch’s theorem (PBC)

- Maths trivial

- No BSSE

but!

Have no resemblance to real electron density/wavefunction

Millions PWs needed

Difficult to extract “chemistry” from PW expansion

Mathematical choice : Planewaves



H-like AOs have STO functional form: exponential decay

and discontinuity at nucleus

Pseudopotentials and planewaves

Essential to remove region of

fast variation in AO, WF, 

Achieved through pseudopotentials

Not only core e but also valence e

close to nucleus

(even H needs a pseudopot.)



Complementary features

Cost of the calculations

- Local orbitals: few functions, O(103).

Expensive part is the calculation of integrals

- Planewaves: many functions , O(106).

Expensive part is the diagonalisation (at each k pt)

Numerical integration of solution in reciprocal space…

Local orbitals vs planewaves - 1

𝐹 𝑘 𝐶(𝑘) = 𝑆 𝑘 𝐶(𝑘) (k)



Which Hamiltonian?

- Local orbitals:

local nature enables truncation of sums 

(distance or overlap between AOs)

- Planewaves: 

truncations require localisation (Wannier fcts)

HF: 2e integrals (Coulomb,Exchange) run over 4 indices <ij|kl>

DFT (local functionals): integrals run over 2 BS indices

Planewaves best suited for DFT (local functionals)

Local orbitals more natural choice for HF (including hybrid DFT)

Problem even more critical for post-HF techniques

Truncation of sums is imperative

Local orbitals vs planewaves - 2



Summary – a word of wisdom

When it comes to QM methods we are spoilt for choice

- Hamiltonians

- Basis set types

- Models, e.g. PBC vs (embedded) clusters

Each has advantages and disadvantages; 

Best suited combinations: PW-local DFT, AO-wavefct

If we understand what they are we can exploit at best the

capability of the techniques and at the lowest cost

When it comes to basis sets, we can test convergence

The best PW and AO result (for the same Hamiltonian)

must converge to the same value

Some “black magic”: which BS size in AOs, pseudos in PW

PW more restrictive in the choice of Hamiltonian


