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1 Introduction
In these notes we seek to understand how it is that phases of materials, such as gases and liquids,
can coexist, and to identify the way in which they transform into one another and the rate at which
they do so. Most common phase transitions occur by virtue of the phenomenon known as nucleation,
where a tiny fragment of the new phase grows out of the old phase, initially impeded by the need to
surmount a thermodynamic barrier. The existence of such a barrier makes it possible to maintain
the old phase in a state of metastability for some considerable time, for example water can be kept
in its liquid phase at temperatures as low as −40◦ C at room pressure, if one is careful, even though
its phase diagram would require it to turn into ice. Sections 2-5 of these notes address the statistical
mechanics of coexistence between the gas and liquid phases of a weakly attractive hard sphere fluid,
and the remaining sections are concerned with the kinetics of a nucleated phase transition: the rate
of crossing of the barrier. In these later sections we shall proceed in a general framework, but the
approximate classical theory of nucleation will be introduced to illustrate some points. Finally, we
consider the nonequilibrium thermodynamics of the process of nucleation and consider whether it is
compatible with the second law.

2 Density fluctuations in an ideal gas
The ideal gas is a system where analytic treatment of the equilibrium statistical mechanics is possible.
The canonical partition function of an ideal gas ofN spin zero particles of massm in three dimensions
is easy to compute:

Z ig
N = 1

h3NN !

∫ N∏
i=1

dpidxi exp[−
N∑
i=1

p2
i /(2mkT )] = 1

N !

N∏
i=1

∫ 1
λ3

th
dxi = (V nq)N

N ! , (1)

where nq(T ) = (2πmkT/h2)3/2 is the quantum concentration, equal to the inverse of the cube of
the thermal de Broglie wavelength λth. The quantum concentration is not only the threshold spatial
density of a gas above which it exhibits quantum effects, but it also acts as if it were a density of
microstates in three dimensional coordinate space. The thermal de Broglie wavelength is the effective
spatial separation between microstates in such a phase space. Note that the indistinguishability
correction appears here since the classical dynamics allow particles to swap positions. The correction
is an approximate way to recognise that this should not be treated as a distinct configuration, as a
consequence of the dictates of quantum mechanics.

The Helmholtz free energy for large N is Fig = −kT lnZ ig
N ≈ −kT [N ln(V nq) −N lnN + N ] =

NkT [ln(n/nq)−1], with particle density n = N/V , having used Stirling’s approximation. Notice that
the indistinguishability correction makes F extensive, as required. The grand canonical partition
function for chemical potential µ is:

ZG(µ, V, T ) =
∞∑
N=0

exp(µN/kT )Z ig
N =

∞∑
N=0

[V nq exp(µ/kT )]N

N ! = exp[V nq exp(µ/kT )], (2)

and we can then identify the grand potential Φ(µ, V, T ) = −kT lnZG = −kTV nq exp(µ/kT ). We
can then compute, using the method of the grand canonical ensemble, the mean number of particles
found in volume V when the chemical potential of the gas is µ:

〈N〉 = 1
ZG

∞∑
N=0

N exp(µN/kT )Z ig
N = kT

(
∂ lnZG
∂µ

)
V,T

= V nq exp(µ/kT ) = lnZG. (3)

This can be inverted to relate the chemical potential of the reservoir to the mean population in the
system:

µ = kT ln[〈N〉/(nqV )], (4)
becoming µ ≈ kT ln(n/nq) for a large system with negligible population fluctuations. If a gas exceeds
the quantum concentration it begins to exhibit quantum properties, so that the chemical potential
of a classical ideal gas is negative since 〈N〉/V � nq. In order to increase the mean population in
the system, we need to increase µ, meaning that it should become less negative.

Similarly, the mean square population in the system for the ideal classical gas is

〈N2〉 = 1
ZG

∞∑
N=0

N2 exp(µN/kT )Zig = (kT )2

ZG

(
∂2ZG
∂µ2

)
V,T

, (5)
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Figure 1: Probability distribution of the number of non-interacting particles N in a system that is
in contact with a heat and particle bath at a given temperature and chemical potential. The mean
population, given by Eq. (3), is equal to three for the chosen system volume.

reducing to

〈N2〉 = kT

ZG

∂

∂µ
ZG〈N〉 = kT

ZG

∂

∂µ
ZG lnZG

= kT
∂

∂µ
lnZG + kT lnZG

∂

∂µ
lnZG = lnZG + (lnZG)2, (6)

so
〈N2〉 = (1 + 〈N〉)〈N〉, (7)

which nicely illustrates the typical observation in equilibrium systems that the variance in population
σ2 = 〈N2〉 − 〈N〉2 is proportional to the mean.

Density fluctuations in an ideal gas will only be appreciable when we consider a system volume
such that the mean population is small. For example, if the mean is 1012 particles (for an ideal gas
at room pressure and temperature this would require the system volume to be a cube of side 0.1
mm), then the standard deviation would be 106 or one millionth of the mean. In contrast, if the
sides of the cube were of order 10 nm, the mean and standard deviation of the population would be
about 10 and 3, respectively. It is at the nanoscale, well away from the thermodynamic limit, that
the detailed canonical statistics (not just the expectation values) prove to be important.

A further conclusion we can reach from this analysis of the classical ideal gas in equilibrium is
that the probability that a volume V should contain N particles is

P (N) = 1
ZG

exp(µN/kT )Z ig
N = 1

ZG

[V nq exp(µ/kT )]N

N ! = 1
N ! 〈N〉

N exp(−〈N〉), (8)

having inserted lnZG = 〈N〉. This is a Poisson distribution, illustrated in Figure 1, that describes
the likelihood of the occurrence of N independent events (that we might visualise in this case as
particle insertions into the system volume from the surrounding gas). Later on we shall study how
this distribution is modified and can become bimodal when interactions between the particles are
introduced. We’ll also explore how an arbitrary distribution might evolve in time towards such a
stationary form, through the process of nucleation.

3 Nonideal gases and the virial expansion
We study nonideal gases in order to compute the free energy of a set of interacting particles. It will
be apparent that approximations now have to be made. We shall restrict our discussion to particles
with zero spin.

3.1 Two particle system
We start with a system of two particles of equal mass that interact through a potential φ(r12) where
r12 is their separation. The Hamiltonian isH(p1,p2,x1,x2) = |p1|2/(2m)+|p2|2/(2m)+φ(|x1−x2|)
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and the canonical partition function is

Z2 = 1
h62!

∫ 2∏
i=1

d3pid3xi exp(−H/kT ). (9)

The integration is to be performed over all values of momenta, and all particle positions within a
(large) box of volume V . We transform to spatial coordinates R = 1

2 (x1 + x2) and r12 = x1 − x2,
with a Jacobian of unity, and perform the momentum integrals to get

Z2 = 1
2

(
2πmkT
h2

)3 ∫
d3R d3r12 exp(−φ(r12)/kT ) = 1

2V
2n2
qα, (10)

where nq = (2πmkT/h2)3/2 is once again the quantum concentration. We have defined

α = 1
V

∫ ∞
0

4πr2
12 exp(−φ(r12)/kT )dr12, (11)

having assuming the integral converges. α would be unity if the interaction potential were zero, but
otherwise it expresses the deviation from the behaviour of two noninteracting classical particles (an
N = 2 ideal gas), which would be represented by a partition function Z ig

2 = 1
2 (nqV )2 = 1

2 (Z ig
1 )2.

It is convenient to write

α = 1 + 1
V

∫ ∞
0

4πr2f(r, T )dr = 1 + B(T )
V

, (12)

in terms of a temperature dependent quantity B(T )

B(T ) =
∫ ∞

0
4πr2f(r, T )dr, (13)

where
f(r, T ) = exp(−φ(r)/kT )− 1, (14)

is called the Mayer function, such that

Z2 = 1
2V

2n2
q(T )

(
1 + B(T )

V

)
= Z ig

2

(
1 + B(T )

V

)
, (15)

from which thermodynamic properties follow. For example, the pressure is

p = kT

(
∂ lnZ2

∂V

)
T

= kT

(
∂ lnZ ig

2
∂V

)
T

+kT
(
∂ ln(1 + B/V )

∂V

)
T

= 2kT
V
−kT

(
1 + B

V

)−1 B
V 2 , (16)

and we can regard the second term as a nonideal correction to the ideal gas pressure expressed by
the first term.

3.2 Many particle fluid
The procedure can be extended to a gas of N particles in a box. The partition function is now

ZN = 1
N !n

N
q

∫ N∏
i=1

d3xi exp(−
∑
j>i

φ(rij)/kT ) = 1
N !n

N
q

∫ N∏
i=1

d3xi
∏
j>i

(exp(−φ(rij)/kT ))

= 1
N !n

N
q

∫ N∏
i=1

d3xi
∏
j>i

(1+f(rij , T )) = 1
N !n

N
q

∫ N∏
i=1

d3xi (1+f(r12, T )) (1+f(r13, T )) · · ·

≈ 1
N !n

N
q

(
V N + N(N − 1)

2

∫ N∏
i=3

d3xid3x1d3x2 f(r12, T )
)

+ terms in f2

= 1
N ! (V nq)N

(
1 + N(N − 1)

2V 2

∫
d3x1d3x2 (exp(−φ(r12)/kT )− 1)

)
, (17)

where rij is the distance between particles i and j. Notice that on the third line only contributions
to the integrand involving a single f function have been retained, and it has been recognised that
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there are 1
2N(N − 1) of them corresponding to the number of particle pairs. Volume integrations

have been performed where possible. It will turn out that the Mayer approach corresponds to an
expansion in the particle density N/V , also known as a virial expansion.

We write d3x1d3x2 = d3R d3r12 = d3R 4πr2
12dr12 and use Eqs. (1) and (12) to give

ZN ≈ Z ig
N

(
1 + N(N − 1)

2V B
)
, (18)

which is consistent with Eq. (15) for N = 2, and then we can obtain the pressure

p = kT

(
∂ lnZN
∂V

)
T,N

≈ NkT

V
− kT

(
1 + N(N − 1)

2V B
)−1

N(N − 1)B
2V 2 ≈ nkT − 1

2kTBn
2. (19)

We have expressed the result in terms of n = N/V and assumed N � 1. We take N2B/V to be
small compared with unity and have neglected terms proportional to n3 and beyond.

It is apparent that we have derived a microscopic form for the so-called second virial coefficient:

B2(T ) = − 1
2B =

∫ ∞
0

2πr2 (1− exp(−φ(r)/kT )) dr, (20)

that appears in the virial equation of state of a nonideal gas:

p

kT
=
∞∑
i=1

Bi(T )ni. (21)

The properties of a nonideal gas can be understood by computing as many virial coefficients as
possible, in order to describe an increasingly dense gas.

3.3 Weakly attractive hard sphere fluid to lowest order approximation
As an example, consider a weakly attractive hard sphere interaction potential where φ(r) is equal to
infinity for r < rp, corresponding to a rigid repulsion at that particle separation (the hard sphere
diameter), but small in magnitude in comparison with kT for r ≥ rp, as illustrated in Figure 2. We
can write

B2(T ) = 2π
3 r3

p +
∫ ∞
rp

2πr2 (1− exp(−φ(r)/kT )) dr

≈ 2π
3 r3

p +
∫ ∞
rp

2πr2φ(r)
kT

dr = b− a

kT
, (22)

with positive coefficients

b = 2πr3
p/3 and a = −

∫ ∞
rp

2πr2φ(r)dr. (23)

We have introduced notation that allows the derived approximate equation of state to be related to
the framework introduced by van der Waals (p+ an2)(1− bn) = nkT , which can be written

(
p+ an2) = nkT (1− bn)−1 ≈ nkT (1 + bn) ⇒ p

kT
≈ n

(
1 +

(
b− a

kT

)
n+O(n2)

)
, (24)

in a virial form. Thus the b parameter in the van der Waals equation of state is of the order of
the particle volume and a is a measure of the mutual interaction energy of a particle pair. If φ
took a different form, such as the Lennard-Jones expression also shown in Figure 2, or if φ(r) were
not much smaller than kT , the second virial coefficient would have a more elaborate temperature
dependence and bear a more complicated relationship to the strength and range of the interaction.

Returning to the case of weakly attractive hard spheres we have, starting from Eq. (18),

ZN ≈ Z ig
N (1− nNB2) = Z ig

N

(
1− nN

(
b− a

kT

))
. (25)

The mean energy of the gas per unit volume e = 〈E〉/V follows from 〈E〉 = −d lnZN/dβ, namely

e(n, T ) ≈ 3
2nkT − n

2kT 2 dB2(T )
dT ≈ 3

2nkT + n2
∫ ∞
rp

2πr2φ(r)dr. (26)
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Figure 2: Two commonly chosen interaction pair potentials: in red the so-called Lennard-Jones 6-12
potential with range parameter r0, and in blue a potential that is exponentially attractive, specified
by parameter λ, with a hard repulsion at a minimum separation.

The nonideal term is clearly a mean potential energy that supplements the mean kinetic energy of
the first term. The dependence on n2 arises since we are considering a pairwise interaction and
therefore the additional energy should be proportional to the number of particle pairs in the system,
which goes as n2.

The entropy of the gas follows from the identity S = −(∂F/∂T )V,N with Helmholtz free energy
F = −kT lnZN , namely

S = Sig −
N2k

V

d(TB2(T ))
dT = Sig − nkNb = Sig + ∆SAHS, (27)

suggesting that the interactions reduce the entropy of the gas, per particle, by an amount (in this
approximation) proportional to the volume Nb that each particle is unable to explore in the system
as a consequence of the interparticle repulsion.

The free energy of the system of attractive hard spheres is obtained from Eq. (25):

FAHS = −kT lnZN ≈ −kT lnZ ig
N − kT ln

(
1− nN

(
b− a

kT

))
≈ Fig + kTnN

(
b− a

kT

)
= Fig + ∆EAHS − T∆SAHS, (28)

where ∆EAHS = −nNa and ∆SAHS = −nkNb represent the changes in entropy and energy with
respect to the ideal gas brought about by the attractive hard sphere interactions (to this level of
approximation, the change in entropy is only brought about by the repulsions and not the attractions,
and the other way round for the change in energy). ∆EAHS is a sum of mean cohesive energies −na
per particle.

By including more terms in the partition function, beyond the cutoff made in Eq. (17), further
contributions to the pressure, energy and entropy of the gas can be obtained, corresponding to higher
virial coefficients. They rapidly become rather complicated to compute, but they can in principle
all be obtained from a specification of the microscopic interactions.

3.4 Carnahan-Starling model of weakly attractive hard sphere fluid
For hard spheres without long range interactions, i.e. the model considered previously but with
φ = 0 for r > rp, it has been shown that the next few terms in the virial expansion take the form

pHS

nkT
= 1 + 4η + 10η2 + 18.365η3 + · · · , (29)

where the volume packing fraction η (the volume of the hard spheres divided by the total volume of
the system) is given by η = π

6nr
3
p. The Carnahan-Starling expression is a convenient and remarkably

accurate fitting formula to this behaviour:

pHS

nkT
= 1 + η + η2 − η3

(1− η)3 . (30)

The right hand side increases as the hard sphere packing fraction increases, and can be used to
approximate the pressure at densities high enough to bring about the transition of the fluid to a
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solid. From this we can construct the Helmholtz free energy using the relationship

FHS = Fig +NkT
η (4− 3η)
(1− η)2 . (31)

This expression is conveniently verified by recovering Eq. (30) using

pHS = −
(
∂FHS

∂V

)
N,T

. (32)

Thus

−
(
∂FHS

∂V

)
N,T

= −
(
∂

∂V

)
N,T

[
NkT (ln[N/(V nq)]− 1) +NkT

η (4− 3η)
(1− η)2

]

= NkT/V −NkT
(
∂

∂V

)
N,T

η (4− 3η)
(1− η)2 . (33)

The second term on the right hand side can be written

NkT

V 2

(
∂

∂(1/V )

)
N,T

η (4− 3η)
(1− η)2 = N2kT

V 2

(
∂

∂(N/V )

)
N,T

η (4− 3η)
(1− η)2 = NkTη

V

(
∂

∂η

)
η (4− 3η)
(1− η)2 ,

(34)
and we get

pHS = NkT

V
+NkTη

V

[
(1− η)
(1− η)3 (4− 6η) + 2η(4− 3η)

(1− η)3

]
= NkT

V
+ NkTη

V (1− η)3
[
4− 10η + 6η2 + 8η − 6η2] ,

(35)
so

pHS

nkT
= 1 + η

(1− η)3 [4− 2η] = 1− 3η + 3η2 − η3 + 4η − 2η2

(1− η)3 , (36)

which reduces to Eq. (30). The pressure is sketched in Figure 3 showing how it rises as the packing
fraction increases.

We can take approximate account of the attractive long range tail of the interparticle interactions
by adding the perturbative energy contribution V n2 ∫∞

rp
2πr2φ(r)dr to the free energy, using Eq.

(26), giving us

FAHS = NkT [ln(n/nq)− 1] +NkT
η (4− 3η)
(1− η)2 − V an

2, (37)

where a = −
∫∞
rp

2πr2φ(r)dr, as before. We should also note that the packing fraction can be related
to the van der Waals parameter b through η = nb/4.

The equation of state of the weakly attractive hard sphere fluid, obtained by taking the negative
derivative with respect to V of the free energy in Eq. (37) is

pAHS = pHS − an2. (38)

The additional term is sufficient to bring about a phase change from gas to liquid, which we explore
in the next section.

4 Phase coexistence
4.1 The availability potential
The simple model of a fluid discussed so far allows us to make a case for understanding phase
coexistence, though more elaborate models will be needed for a successful matching of experimental
data.

We begin by recalling from classical thermodynamics that the criterion for coexistence between
two distinct phases of matter is that they should have equal chemical potentials and pressures. The
Maxwell construction to identify coexisting dense and rarefied phases using the equation of state is
typically employed. A more useful and intuitive point of view is to consider a system in contact with
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Figure 3: Hard sphere pressure, compared with the pressure of an ideal gas of point particles, as a
function of packing fraction η, according to the Carnahan-Starling model.

heat and particle baths and to regard the phase selection rule in classical thermodynamics to be the
minimisation of a thermodynamic potential, the availability function A, with respect to density.

The availability is similar in form to the grand potential: for a large system, the minimised avail-
ability is indeed equal to the grand potential. For small systems, there is a more subtle connection
between availability and grand potential. We define availability as

A(N,V, T, µ) = F (N,V, T )− µN. (39)

The grand canonical partition function is then written as

ZG(µ, V, T ) =
∞∑
N=0

exp (µN/kT )Z(N,V, T ) =
∑
N

exp (−(F (N,V, T )− µN)/kT ) =
∑
N

exp (−A(N,V, T, µ)/kT ) ,

(40)
and the grand potential Φ, defined by Φ = −kT lnZG, is given by

Φ(µ, V, T ) = −kT ln
[ ∞∑
N=0

exp (−A(N,V, T, µ)/kT )
]
. (41)

If one term N = Nm dominates the sum, such that A(Nm, V, T, µ) is considerably smaller, in
units of kT , than A(N,V, T, µ) for N 6= Nm, then we can see that Φ(µ, V, T ) ≈ A(Nm, V, T, µ) =
F (Nm, V, T ) − µNm. Nm is the (µ, V and T dependent) particle population that minimises the
availability. In classical thermodynamics of an open system we would say that this population is
selected (by virtue of the contact with the environmental particle bath) as a consequence of the
second law of thermodynamics. The corrections to this approximation vanish for large systems, and
the grand potential can be equated to the availability when minimised over N , as stated earlier. If
the sum is not so dominated, then we must use Eq. (41) to specify Φ.

4.2 Availability of a weakly attractive hard sphere fluid
We shall demonstrate the use of the availability potential in understanding phase coexistence for a
weakly attractive hard sphere fluid. We’ll be able to characterise density fluctuations in the grand
ensemble, going beyond our treatment of the ideal gas in section 2.

In order to provide a graphical approach, we shall employ an excess chemical potential with
respect to a reference value µref = kT ln(4/bnq) and write µ = µref + µex. Using Eq. (37) we then
construct an availability function of a homogeneous fluid of N particles:

A(N) = FAHS − µN = NkT [ln(n/nq)− 1] +NkT
η (4− 3η)
(1− η)2 − V an

2 − µN, (42)

which in terms of packing fraction η, and in dimensionless form, is

Ab
V kT

= −4η
(µex

kT
− ln η + 1

)
+ 4η2 (4− 3η)

(1− η)2 − 16aη2

bkT
. (43)
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Figure 4: The minimum in the (dimensionless) availability function for the attractive hard sphere
fluid identifies the macroscopic equilibrium system packing fraction for a given chemical potential
represented in the form µ = kT ln(4/bnq) + µex. A phase transition accompanied by a discontinuity
in density takes place as the excess chemical potential increases through the coexistence condition
at µex = −3.83kT . A value a = 3bkT has been employed for illustration.

Figure 5: Sketch of fluid density as function of chemical potential for various temperatures (main
plot); and of the densities of the coexisting phases (inset).

We plot this dimensionless availability as a function of packing fraction in Figure 4 for a specific value
of the dimensionless combination a/(bkT ) and three values of µex/kT . We confine our attentions
here to a large system. Classical thermodynamics requires us to select the equilibrium phase (and
its density) by identifying the global minimum of the availability. The double well shape gives
rise to a condition of coexistence between a low and high density fluid (i.e. gas and liquid) at
µex/kT ≈ −3.83 for a = 3bkT . For µex/kT ≈ −3.8 the liquid phase fills the system from the
environmental particle bath but a reduction in environmental chemical potential corresponding to
the more negative µex/kT ≈ −3.86 causes the density of material to fall, with a discontinuity at
about −3.83.

A discontinuity in an order parameter (here the density), as sketched in Figure 5, is a hallmark of
what are called first order phase transitions. More technically, such a transition is associated with a
discontinuity in the slope of a plot of grand potential against chemical potential, but we need not go
further into this matter. Second order phase transitions, which are rarer but have various points of
interest, are associated with a discontinuity in the second derivative of a thermodynamic potential
with respect to an environmental variable. In the present model, the discontinuity between the
densities of the phases diminishes as the temperature rises until they merge at the so-called critical
temperature, as shown in the inset to Figure 5.

5 Density fluctuations in a nonideal gas
Now we can use the free energy and availability potential of an attractive hard sphere fluid to
understand how density fluctuations arise when a system is near a phase transition, or more generally
when the system in question is small such that the mean particle population is low. Let us consider
again the grand canonical ensemble probabilities of macrostates of the system defined by particle
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increasing chemical 
potential

Figure 6: Equilibrium probability distributions describing density fluctuations in an open system:
the system becomes bimodal as the chemical potential increases, corresponding to a phase transition.
This sketch describes a small system where the peaks are fairly broad, suggesting that fluctuations
are not negligible. The peaks become very narrow for large systems.

population. We have

P (N) = 1
ZG

exp(µN/kT )ZN = 1
ZG

exp(−[F (N,V, T )−µN ]/kT ) = exp([Φ(µ, V, T )−A(N,V, T, µ)]/kT ),
(44)

and so an availability function with a double well shape as a function of N will give rise to a bimodal
probability distribution in the equilibrium population. There will be peaks of probability of equal
height at two values of N when the chemical potential of the system (and environment) is at the
coexistence value for a given temperature.

For a large system where 〈N〉 is substantial for both phases, the peaks will be very narrow and
the phase transition will be described by an abrupt shift in probability from one equilibrium density
to the other as the chemical potential is moved through the coexistence point. For a small system,
on the other hand, the probability distribution is broad and we would see a more gentle evolution
in its shape as the chemical potential is changed. A sketch of the distribution P (N) (represented
here, for convenience, as a curve rather than as a set of discrete points) for three values of the
chemical potential is shown in Figure 6. Away from coexistence conditions, we would expect to
see fluctuations in system population about the mean values for the two equilibrium phases. At
conditions close to coexistence we would also expect to see major fluctuations in population as a
consequence of the bimodality of the pdf in such an environment. The situation may be contrasted
with the density fluctuations of an ideal gas considered in Eq. (8) and Figure 1. The differences are
brought about by the interactions between particles that stabilise larger fluctuations.

We shall come to see that in sufficiently small systems, such population fluctuations correspond to
the formation of clusters of particles, at least for the gas-liquid phase transition under consideration
here. By constructing a free energy function F (N,T ), or equivalently a canonical partition function
that represents a single cluster in the system, it is possible to build a model of the formation, or
nucleation, of a macroscopic droplet from the vapour. We shall be able to interpret the peak in
the availability function as a thermodynamic barrier controlling the nucleation of droplets of stable
condensed phase starting from a metastable gaseous phase.

It should be recognised that many phase transitions, not just that between a gaseous and con-
densed phase, can be described by similar statistical mechanical approaches. In general, the phases
involved in the transition are characterised by an order parameter : in the above we used the particle
density. In the transformation from a liquid to a solid, the order parameter is in part the density, but
more importantly the emerging discrete translational symmetry in the arrangement of particles. For
phase transitions in magnets, the order parameter might be the strength of the magnetisation. In
the phase transition from a normal metal to a superconductor, the order parameter is related to the
proportion of electrons that have entered a state of Bose-Einstein condensation. In each case, the
system (if it is large enough) seeks equilibrium through the minimisation of an availability potential
with respect to an order parameter. In doing so, the system is following the imperative of the second
law of thermodynamics. If the system is small, then fluctuations are more apparent, but they are
again characterised by the availability function.
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Figure 7: Transitions between system macrostates labelled by particle number N , and illustrated by
snapshots of molecular clusters. Growth and evaporation processes take place according to transition
probabilities per unit time βN and γN , respectively.

6 Cluster dynamics and droplet nucleation
We now use the ideas of macrostate probability dynamics in the context of density fluctuations in a
nonideal gas. Our aim is to develop models of the nucleation of condensed phase droplets from a
metastable vapour, namely one that is placed under conditions outside the normal gaseous region
of the phase diagram. It is possible, with care, to cool a vapour below its so-called dew point, or
compressed to make its pressure exceed the saturated vapour pressure. We want to understand how
the phase transition develops and to compute the rate of droplet formation, or equivalently the time
that a phase can be maintained in a metastable state.

In order to do this we need to define a set of macrostates and the transition probabilities between
them, and then construct a set ofmaster equations governing the occupational probabilities and solve
them. The equilibrium grand canonical probability distribution over the macrostate phase space of
cluster size is a reference case that will help us define the probability dynamics.

6.1 Becker-Döring equations
If the system volume has spatial dimensions of the order of nanometres, the principal microstates in
the phase space will consist of a single molecular cluster, bound together by interparticle attractive
forces. Snapshots of such clusters are shown in Figure 7. The clusters will define our macrostates and
will be labelled by the number of particlesN within them. The neglected details of the environmental
dynamics are represented through transition probabilities for changes in the number of particles
in the system, representing the effects of agglomeration between the cluster in the system and
a monomer from the environment, or the evaporative loss of a monomer from the cluster to the
environment. The gain or loss of a molecular dimer, or even bigger clusters, is assumed to be rare.
This physical motivation helps us to construct a set of master equations for the probabilities PN (t)
that the system should contain an N -cluster:

dPN
dt = βN−1PN−1 − γNPN − βNPN + γN+1PN+1, (45)

where βN and γN are transition probabilities, per unit time, that an N -cluster macrostate should
gain or lose a particle, respectively. We expect that these transition rates might depend on the
condition of the environment, namely its chemical potential and temperature. The above are known
as the Becker-Döring equations and they describe a so-called birth/death process.

The master equations can be expressed in terms of a current jN = βNPN−γN+1PN+1 describing
the flow of probability between macrostates N and N + 1. We can write dPN/dt = jN−1 − jN and
furthermore, we can identify a condition of detailed balance for zero probability current:

βNP
eq
N = γN+1P

eq
N+1, (46)

where we have introduced probabilities P eq
N describing a state of equilibrium (grand canonical in

this case) between the system and its environment.
We know from our earlier discussion of density fluctuations and Eq. (44) that the equilibrium

macrostate probabilities are given by P eq
N ∝ exp(−[F (N) − µN ]/kT ) = exp(−A(N)/kT ) where

F (N) is the free energy of the system (here an N -cluster) and A(N) is its availability potential in
the given environment. The free energy and hence the availability will depend on the system volume

11



Figure 8: Illustration of the solution to a master equation describing the relaxation to equilib-
rium of probabilities PN (t) for the presence of an N particle cluster inside a system coupled to an
environment.

as well as particle content, but we suppress this notationally. The gain and loss (or growth and
decay) transition rate coefficients must satisfy

γN+1

βN
= P eq

N

P eq
N+1

= exp([A(N + 1)−A(N)]/kT ). (47)

The next step is to assert on physical grounds that the probability per unit time of cluster growth βN
is proportional to a (presumed) monomer density n1 in the environment. This is how the monomer-
cluster collision rate would scale. If we regard the environment as an ideal gas, then this density
is related to its chemical potential according to µ = kT ln(n1/nq), so βN ∝ exp(µ/kT ). We write
βN = β0 exp(µ/kT ) where, according to kinetic theory, β0 would correspond to an approach velocity
multiplied by a capture cross section, together with other factors. We then can write

γN+1 = β0 exp([F (N + 1)− F (N)]/kT ), (48)

and hence we have a full specification of the transition coefficients in the Becker-Döring equations
in terms of the free energies of the N -cluster macrostates (and hence their canonical partition
functions) and the chemical potential (or equivalently the monomer density) of the surrounding
vapour. Thus we can model the nonequilibrium evolution of the macrostate probabilities PN towards
the equilibrium distribution P eq

N , starting from an arbitrary initial condition.
As an example, consider an initial situation P0(0) = 1 with PN (0) = 0 for N > 1, which

states that we are certain that the system is initially empty of particles. In order to model the
nonequilibrium statistical mechanics of the change in population (cluster size) with time, we would
solve the Becker-Döring equations and observe the spreading out of the initial probability spike
at N = 0 to form a time independent equilibrium distribution, as illustrated in Figure 8 (in this
case for a P eq

N that monotonically decreases with N). We could use the evolving PN (t) to compute
expectation values, such as 〈N〉t =

∑∞
0 N PN (t), the mean size of the cluster, and hence we could

describe the relaxation towards a statistical state of equilibrium.

6.2 Nucleation barrier and critical size
The probability dynamics become more interesting if we consider a relaxation from an initial state
towards an equilibrium probability distribution P eq

N that is bimodal. There will be a cluster size
range between the modes that has low probability at equilibrium, and which acts as a bottleneck
for the flow of probability current. It turns out that if the initial distribution of probability lies
principally on one side of this region, there will be a period during the subsequent relaxation when
the probability passes relatively slowly from one mode into the other. This is illustrated in Figure
9, using continuous, instead of discrete, initial and equilibrium pdfs for clarity. The equilibrium
distribution will be related to a double well profile of the availability, as was discussed in section

12



Figure 9: The evolution of a probability distribution from a nonequilibrium initial state towards a
bimodal equilibrium profile P eq

N . The bottleneck in the process is the rate at which probability can
pass across the central region in the phase space, which is described by a current jN .

4. We shall interpret the draining of probability between modes as the overcoming of a barrier
represented by this thermodynamic potential: a nucleation event.

It will turn out to be convenient to write the cluster free energy as

F (N,V, T ) = Nµcoex + Fexc(N,T ) + f(V ), (49)

where Fexc is called the excess free energy and µcoex is the chemical potential at which there is
coexistence between the bulk vapour and condensed phases (see Section 4). The final term carries
the volume dependence of F and can be neglected since it will cancel out in all physical situations.
In classical thermodynamics we would expect a free energy to be extensive, that is proportional to
the number of particles in the system. But for small clusters, we are far from the thermodynamic
limit and the excess free energy need not be proportional to N .

We can write the availability of a cluster as

A(N) = F (N)− µN = Fexc(N)−N∆µ, (50)

where ∆µ = µ− µcoex. From our earlier discussions of phase stability in Section 4, if µ > µcoex we
expect to find that the global minimum in the availability potential should lie at large N , reflecting
the thermodynamic stability of the condensed phase. If ∆µ < 0 then the global minimum should
most likely reside at N = 0, corresponding to the (rarefied) vapour.

The excess free energy is a property of the cluster, computable from the partition function.
It typically increases sublinearly with N (for example Fexc ∝ N2/3) and we shall focus on such
a situation here. A toy availability function A(N) = θN2/3 − N∆µ, with positive constant θ
and positive ∆µ, rises at first for small cluster sizes, reaches a peak and then decreases. This
situation is shown in Figure 10: the existence of a deep well further out on the right hand side
is implied. The ratio of evaporation to growth parameters in the master equations, γN+1/βN =
exp[(A(N + 1)−A(N))/kT ], consistent with this availability function is also shown.

The availability goes through a maximum equal to A∗ at a so-called critical size N∗. For cluster
sizes smaller than the critical size, the rate of loss of a particle (by evaporation) is greater than
the rate of particle gain (by agglomeration), while for sizes above this threshold, the situation is
reversed, as demonstrated by the plotted ratio γN+1/βN . There is clearly a pattern of a preference
for clusters to evaporate at small sizes that develops into an inclination to grow at large sizes. This
allows us to visualise the formation of condensed phase droplets from a metastable vapour phase
as the crossing of a bottleneck region in cluster size space, or the surmounting of an availability
potential barrier, brought about by thermal fluctuation.

6.3 Solution to the rate equations
The nucleation process can be investigated by solving the Becker-Döring equations subject to bound-
ary conditions on the probability profile such that a steady probability current is produced. We solve
for a stationary nonzero current jN = j:
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Figure 10: The red curve is the availability A(N) controlling the process of nucleation by processes
of molecular cluster growth and evaporation (shown for clarity as a continuous line). The profile
corresponds to a set of rate coefficients βN and γN in the Becker-Döring equations. For clusters
smaller than the critical size N∗, transitions that decrease cluster size N are more likely than
transitions that increase N . The ratio γN+1/βN passes through unity (the dashed line) at the
critical size, and then the relative magnitude of the transition probabilities reverses. The height of the
availability barrier A∗ controls the stationary nucleation rate of droplets arising from a metastable
vapour.

j = βNPN − γN+1PN+1, (51)

having set the probability that a monomer P1 should occupy the system to be a constant, and the
probability PNmax for a cluster at a size Nmax to be zero. These conditions are simplifications of the
idea that the macrostate dynamics evolve a cluster from a monomer through the stochastic processes
of growth and evaporation, and as soon as the cluster reaches a certain size Nmax it is removed and
we start again with a fresh monomer.

We shall cast these equations in a slightly different form, where the probabilities for the presence
of a single cluster in a small system volume are replaced by the mean population densities of clusters
nN in a large system. The master equations then become

J = βNnN − γN+1nN+1, (52)

which are usually called rate equations, and the current J is now the rate of passage of clusters
between sizes N and N + 1, per unit time and volume of vapour: the droplet nucleation rate.

The solution to the Becker-Döring rate equations is obtained by a straightforward but lengthy
elimination procedure. We write

J = β1n1 − γ2n2

J = β2n2 − γ3n3

· · ·
J = βNmax−1nNmax−1 − γNmaxnNmax , (53)

and solve for the n2, n3, etc, subject to boundary conditions n1 = const and nNmax = 0. We define
αk = γk/βk and multiply the left hand side of the ith equation by a product

∏i
k=2 αk. The first

three equations are then

J = β1n1 − γ2n2
2∏
k=2

αkJ =
2∏
k=2

αkβ2n2 −
2∏
k=2

αkγ3n3 = γ2n2 −
2∏
k=2

αkγ3n3

3∏
k=2

αkJ =
3∏
k=2

αkβ3n3 −
3∏
k=2

αkγ4n4 =
2∏
k=2

αkγ3n3 −
3∏
k=2

αkγ4n4. (54)
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The key thing to notice is that when we add all the equations together, there will be repeated
cancellation between terms on the right hand sides. The last two equations are

Nmax−2∏
k=2

αkJ =
Nmax−2∏
k=2

αkβNmax−2nNmax−2 −
Nmax−2∏
k=2

αkγNmax−1nNmax−1

=
Nmax−3∏
k=2

αkγNmax−2nNmax−2 −
Nmax−2∏
k=2

αkγNmax−1nNmax−1

Nmax−1∏
k=2

αkJ =
Nmax−1∏
k=2

αkβNmax−1nNmax−1 =
Nmax−2∏
k=2

αkγNmax−1nNmax−1, (55)

which exhibits the same pattern. The sum of all the equations is then

J

(
1 +

Nmax−1∑
N=2

N∏
k=2

αk

)
= β1n1. (56)

Next we note that
N∏
k=2

αk =
N∏
k=2

γk
βk

= β1

βN

N∏
k=2

γk
βk−1

= β1

βN

N∏
k=2

exp([A(k)−A(k−1)]/kT ) = β1

βN
exp([A(N)−A(1)]/kT ),

(57)
so we can write

J = β1n1

1 +
∑Nmax−1
N=2

β1
βN

exp([A(N)−A(1)]/kT )
, (58)

which is the exact nucleation rate in terms of the cluster availability function, the monomer popu-
lation and the rate coefficients βN . Note that it is a difference in availability potential that controls
the rate: the irrelevance of a volume-dependent term f(V ) in the free energy in Eq. (49) is now
demonstrated.

A rough simplification of this expression is obtained by approximating the denominator by the
largest term in the sum, the one that has the maximum value of A(N). This also identifies N∗,
the critical size. In passing, it should be noted that as long as the maximum size Nmax, introduced
to terminate our set of equations, is rather larger than N∗, its actual value is immaterial. The
nucleation rate can then be written in the approximate form

J ≈ βN∗n1

exp([A(N∗)−A(1)]/kT ) ∝ n
2
1 exp(−[A(N∗)−A(1)]/kT ), (59)

since the growth rates βN are proportional to the monomer population, as previously noted.
The proportionality to the square of the monomer density is a reminder that nucleation is driven

by collisions, but the most important message to grasp from this result is that the nucleation rate
is controlled by the maximum availability A(N∗) = A∗, shown in Figure 10. The expression and
the analysis provides a mathematical underpinning of a general rule in statistical physics, and in
chemistry, that the rate of crossing of a thermodynamic barrier is proportional to the exponential
of the negative of the barrier height; a Boltzmann factor.

In the context of modelling the nucleation process, it is traditional to define a quantity that we
shall call the nucleation barrier potential:

∆φ(N) = A(N)−A(1) = ∆Fexc(N)− (N − 1)∆µ, (60)

where ∆µ = µ − µcoex, and ∆Fexc(N) = Fexc(N) − Fexc(1), a difference between the excess free
energy Fexc(N) of a cluster of size N , defined in Eq. (5), and the excess free energy of a monomer.
Fundamentally, ∆Fexc is to be computed from the canonical partition function of a cluster, for which
various methods have been developed but will not be discussed here.

The ∆Fexc(N) term in Eq. (60) typically turns out to increase sublinearly in N while the second
decreases linearly, for positive ∆µ corresponding to conditions favouring condensation in the system.
The contributions give rise to a barrier, as illustrated in Figure 10, that the cluster has to surmount
if it is to nucleate into a large droplet. If the excess free energy were zero, then ∆φ(N) would be
linear in N and there would be no barrier. This makes ∆Fexc the focus of attention in nucleation
theory and explains why it makes sense to introduce it through Eq. (49).
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If we treat N as a continuous variable, then the critical size N∗, where ∆φ(N) is at a maximum,
may be found from the condition

d∆φ
dN = d∆Fexc

dN −∆µ = 0, (61)

and the nucleation rate J would be proportional to a Boltzmann factor corresponding to the height
of the barrier,

J ≈ βN∗n1 exp(−∆φ(N∗)/kT ). (62)
.

6.4 Classical nucleation theory
A very widely used model of cluster thermodynamics asserts that the principal contribution to the
excess free energy ∆Fexc of an N -cluster is a term proportional to its notional surface area. The
model is based on the idea that a cluster resembles a spherical droplet with the interior density of
the bulk condensate (a phase that has a free energy approximated by µcoex per particle) and the
surface tension σ of a macroscopic condensed phase. These assumptions are known as the capillarity
approximation. Such assumed geometry, density and surface properties are only really appropriate
for clusters with very large values of N , and we would not expect this approach to be an accurate
model for clusters of only a few molecules.

Specifically we would write
∆Fexc(N) ≈ 4πR2

Nσ, (63)
where RN is the droplet radius and 4πR2

N its surface area. The surface tension corresponds to a free
energy per unit area. Why is this? Recall that surface tension is defined through the fundamental
relation of thermodynamics dE = TdS − pdV + µdN + σdA, where dA is an increment in system
surface area. Thus dF = −SdT − pdV + µdN + σdA and so σ = (∂F/∂A)T,V,N .

The droplet radius may be written

RN =
(

3N
4πn`

)1/3
, (64)

where n` is the particle density in the bulk condensed (liquid) phase, such that

∆Fexc(N) = 4πσ
(

3N
4πn`

)2/3
= θN2/3, (65)

where θ = (6π1/2/n`)2/3σ is a coefficient that depends on the physical properties n` and σ. This
expression for ∆Fexc(N) does not vanish at N = 1 as it should, but in classical theory we assume
that the relevant critical cluster size is large, so it is only meant to be appropriate for large N .

Then we solve Eq. (61) to obtain the critical cluster size:

2
3θN

−1/3 −∆µ = 0 ⇒ N∗ =
(

2θ
3∆µ

)3
, (66)

which leads to a height of the nucleation barrier:

∆φ(N∗) = θN∗2/3−(N∗−1)∆µ = θ

(
2θ

3∆µ

)2
−
(

2θ
3∆µ

)3
∆µ+∆µ = θ

3

(
2θ

3∆µ

)2
+∆µ = 4θ3

27(∆µ)2 +∆µ.

(67)
Note that we can write

∆µ = µ− µcoex = kT ln(n1/n
sat
1 ), (68)

through representing the chemical potential using the ideal gas expression, Eq. (4), and introducing a
monomer density nsat

1 (T ) appropriate to a saturated vapour, namely a gas phase that is in coexistence
with the condensed phase at the temperature of the environment. The ratio of the monomer density
in a metastable vapour to its value in a saturated vapour is called the supersaturation, S, (not to be
confused with entropy!), also referred to as the relative humidity in the case of water, and so we can
write ∆µ = kT lnS. The classical nucleation rate of droplets can then be obtained by combining
Eqs. (62), (67) and (68):

JCNT ≈ βN∗nsat
1 exp

(
− 4θ3

27(kT )3(lnS)2

)
. (69)
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Figure 11: Experimental values of nucleation rate of water droplets (circles) under a range of con-
ditions of temperature T and vapour supersaturation S, compared with the predictions of classical
nucleation theory, Eq. (69), labelled ‘BD-theory’.

The classical nucleation rate does account roughly for the experimentally measured rates of
formation of droplets from some metastable vapours, and extensions have been added to allow it to
be applied to the freezing of liquids and the crystallisation of solutes from solvents. Putting physical
data and typical experimental conditions into Eq. (66) gives critical sizes of a few tens of molecules
and heights of the nucleation barrier of a few tens of kT .

We can illustrate this for water vapour under conditions studied experimentally. We shall use
σ ≈ 0.077 N/m, n` ≈ 3.34×1028 m−3 such that θ ≈ 3.62×10−20 J. For T = 260 K and S = 7.2 (i.e.
720% relative humidity) we would predict a critical cluster size of N∗ ≈ 39, a critical cluster radius
of R∗ = 0.66 nm and nucleation barrier height of about 39 kT . The rate of monomer attachment
to the critical cluster βN∗ can be regarded as the product of the critical cluster surface area and
the molecular flux in the vapour. This can be estimated to be 4πR∗2nsat

1 v̄, where v̄ is the molecular
root mean square velocity. Using a saturated vapour monomer density of nsat

1 ≈ 6.19 × 1022 m−3,
for T = 260 K, and v̄ ≈

√
kT/m ∼ 350 ms−1, where m is the molecular mass of water, we find that

βN∗ ≈ 1.2×108 s−1 and we finally obtain a nucleation rate of J ≈ 108 cm−3s−1. This would make a
very dense mist of very fine nanoparticles! Bear in mind that the supersaturation and temperature
are deliberately chosen in the experiment to produce a high rate of droplet formation.

Figure 11 is a comparison between the predictions of classical nucleation theory and experimental
nucleation rates for water for a range of temperatures and vapour supersaturations, obtained in a
small cloud chamber and published by Wölk et al (J. Phys. Chem. B105, 11685 (2001)). The
reasonable agreement is remarkable, considering the approximations made in the droplet model.

Classical nucleation theory is not always successful, however, primarily because the capillarity
approximation upon which it is based is a very primitive characterisation of small molecular clusters.
Nevertheless, the expression in (69) has intuitive value in that it suggests that in order to drive the
nucleation of droplets at a faster rate, we need to increase the vapour supersaturation S, all other
parameters being held constant. Also, the nucleation rate depends on the surface tension of the
condensed phase: the higher the surface tension σ, and hence θ, the slower the rate. The other
lesson is that the rate is rather sensitive to supersaturation, surface tension and temperature since
these quantities appear inside an exponential.

To do better than classical theory, it is necessary to compute the partition functions of clusters
of various sizes and develop a more realistic model of the excess free energy, but this is beyond the
scope of these lectures. However, as an illustration of what can be done, Figure 12 illustrates the
excess free energy of water (modelled using the TIP4P(2005) intermolecular force field) obtained
by Lau et al (J. Chem. Phys. 143, 244709 (2015)) using a method of steered molecular dynamics
similar in effect to thermodynamic integration. Remarkably, the capillarity approximation seems to
hold for clusters as small as a few tens of molecules, at least for this temperature and substance.
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Figure 12: Excess free energy (here labelled Fs), right hand axis) for clusters of TIP4P(2005) water
at 300 K, compared with the capillarity approximation (CNT) and a shifted version (ICCT). An
effective surface tension (here labelled γ) as a function of cluster size is also shown (left hand axis).

7 Nucleation and the second law
If the nucleation process involves the need for a system to overcome an availability barrier, we should
ask ourselves whether this is compatible with the second law. After all, we have been led to believe
that Nature will seek to move a system down the gradient of availability, towards a minimum. When
a nucleation event takes place, is it by virtue of a temporary negative fluctuation in the total entropy
of the world? Does nucleation break the second law?

The answer to this question has only recently emerged through an application of the methods
of stochastic thermodynamics. This framework has allowed a more general view of entropy and its
production to be developed, one that is appropriate for the description of small systems and capable
of accommodating thermal fluctuations. It is a valuable viewpoint since entropy production may
be linked directly to the stochastic dynamics of a system: a random path taken by a cluster as it
changes its size, under the influence of its environment, can be used to define a random path in the
evolution of the total entropy of the world. The details are too many to discuss here, but the key
result to consider is that the total stochastic entropy of the world changes with time according to
the expression

∆stot = ∆ssys + ∆senv, (70)
namely as a sum of the change ∆ssys in a stochastic system entropy ssys(N, t) = −k ln p(N, t), and
a change in a stochastic environmental entropy ∆senv. Here, the system is described by a variable
N and a probability distribution over its values p. The change in stochastic environmental entropy
∆senv for the case of a nucleating cluster is the negative change in its availability potential, divided by
temperature. When a fluctuation takes a cluster over the nucleation barrier, the temporary increase
in availability therefore produces a decrease (albeit fleeting) in the stochastic environmental entropy.
This is the puzzle referred to in the first paragraph of this section: does this not imply a temporary
breakage of the second law? But the resolution is that the change in stochastic system entropy needs
also to be considered. The probability that a cluster is to be found near the top of the barrier is
small, so when it finally does make it, the stochastic system entropy becomes large (small p implies
large ssys) and it turns out that this outweighs the negative change in stochastic environmental
entropy. As is so often found to be the case in thermodynamics, while parts of the world might
see a reduction in entropy as a result of some process, this is compensated by a greater increase
somewhere else, and the second law is respected.

What has not been mentioned here is that the framework of stochastic thermodynamics does
in fact allow negative fluctuations in total stochastic entropy, but these are expected to emerge
universally, and are not a consequence of barrier hopping. The second law in this framework states
that such fluctuations in total entropy production satisfy what are called fluctuation relations, and
that upon averaging over all possible dynamical evolutions, the total stochastic entropy of the world
is expected to increase. Fluctuations are accommodated.

The formulation of total stochastic entropy production in Eq. (70) together with the second law
embodied in the inequality 〈∆stot〉 ≥ 0 constitute our best current understanding of the production
of entropy in dynamic and thermodynamic models of open system behaviour.
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