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SCF convergence



Solving the KS equations

Finding solutions of the Kohn-Sham equations is a chicken and egg
problem.

2m

h2
(__v2 e (r)) &1 (F) = i (1) (1)

The Kohn-Sham potential vs depends on the density n (r). So if we find
the n (r) that minimises the energy for a particular vk (r), ks (1) will
change as a result.

We seek a self consistent value of n (r), such that the energy is
minimised and vis (r) remains unchanged.



Self consistent field (SCF)

With the density n we can calculate the Hamiltonian H, and then solve to
get the density n.
Will the input and output densities be the same?

Hasnip, Phil. "Bands-parallelism in Castep A dCSE Project.” (2008).



Density mixing

The simplest approach is just to mix the input and output densities

1

nhew (r) _ E [ninput (I‘) + noutput (r)] (2)
-

Example of direct mixing for a 2x2x2 supercell of pristine MgO



Density mixing
Not guaranteed to converge and doesn’t work for more complex
examples due to charge sloshing instabilities

1 .
nnew (r) — E [nlnput (r) 4 noutput (I’)] (3)
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Example of direct mixing for a 2x2x2 MgO containing a Vg defect



Density mixing
More complex mixing algorithms keep a record of all densities calculated

and mix many densities together. Broyden and Pulay mixing are the
most commonly used algorithms

Convergence

freiend Direct
e—e Broyden mixing
50 100 150 200
Iteration

Example of direct mixing for a 2x2x2 MgO containing a Vg defect



Smearing

Z Oi (T) hbif? (4)

= If a band lies near to the Fermi level it can be fully occupied in one
iteration and fully deoccupied in the next, leading to quite unstable
behavior. This is always going to happen for metals

= One solution is to allow partial occupancy of bands near the Fermi
level, normally using the Fermi-Dirac distribution to fill them

= In this case, a temperature is used to define the distribution. This
isn’t a physical temperature, but represents a convergence
parameter where we are interested in the T — 0 limit

= This can help with SCF convergence in other contexts e.g. when
there are degenerate levels which are not full
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Spin state
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Spin state
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Spin state

Even electron
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Spin state
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Notes on spin

= You should expect to get integer spin state. Fractional spin states
are most commonly seen when something is wrong

= A DFT code will normally guess that systems with an even number
of electrons are singlets and that systems with odd numbers of
electrons are doublets

m Although there are methods that will optimise the spin state, they
are not very good and normally get stuck on the initial guess. You
will normally need to try higher spin states by hand if you think they
might be lower in energy.



One example
Both atomic and molecular oxygen have a triplet ground state

orbital  \jolecular  ©Orbital

orbital



An example with castep

PARAM FILE
task

charge

spin_polarized
spin

xc_functional
cut_off_energy

elec_method
mixing_scheme

max_scf_cycles
fix_occupancy
smearing_scheme
smearing_width

elec_energy_tol

continuation

singlePoint

pbe
800.0

dm
Broyden

100

False
FermiDirac
300.0 K
le-10

Default

CELL FILE

%block lattice_abc
3.9992 3.9992 3.9992
90 90 90

%endblock lattice_abc

%block species_pot
F CP

Li NCP
%endblock species_pot

%block

010100

s_frac

kpoint_mp_grid 10 10 10
symmetry_generate



An example with castep

OUTPUT

* %ok

Calculating

SCF 1loop

Initial -3
1 -3
2 -3
3 -3
4 -3
5 -3
6 -3
7 -3
8 -3
9 -3
10 -3
11 -3
12 -3
13 -3
14 -3

total energy with cut-off of
Energy Fermi
energy

.42723677E+003 0.00000000E+000
.39578702E+003 -2.92342352E+000
.39756307E+003 -2.90081175E+000
.39663167E+003 1.14915823E+000
.39524930E+003 -3.15806975E-001
.39531163E+003 -2.28144440E-001
.39531477E+003 -1.82010920E-001
.39531479E+003 -1.85547434E-001
.39531479E+003 -1.85890679E-001
.39531479E+003 -1.85836244E-001
.39531479E+003 -1.96826016E-001
.39531479E+003 -1.96808343E-001
.39531479E+003 -1.96810548E-001
.39531479E+003 -1.96812737E-001
.39531479E+003 -1.96810682E-001

Integrated Spin Density
Integrated

| Spin Density|

Final energy, E

* %k

800.000 eV.

Energy gain
per atom

.93121806E+000
.22006128E-001
.16425420E-001
.72795993E-001
.79138978E-003
.91929501E-004
.74457074E-006
.91507229E-007
.19157996E-008
.11551466E-008
.25588684E-010
.64519125E-010
.11890224E-011
.78847387TE-012

0.274386E-14 hbar/2
0.143708E-05 hbar/2

-3395.314791301

eV

<--
<--
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Geometry optimisation



Geometry Optimisation
We can either calculate energies given input atomic positions, or we can
geometry optimise to find low energy structures
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Geometry Optimisation
Geometry optimisation only finds local minima, not global minima
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Geometry Optimisation
These local minima can represent allotropes, which are stable. Carbon
serves as an example. A geometry optimisation would return these
structures, rather than find the global minimum (diamond)

fullerene nanotube graphene
Figure 1. Structures of selected allotropes of carbon.

Oganov, Artem R., et al. "Structure, bonding, and mineralogy of carbon at extreme conditions.” Reviews in Mineralogy and

Geochemistry 75.1 (2013): 47-77.



Geometry optimisation methods

= Conjugate gradient (CG) — very robust method that can be quite
slow

= BFGS — Normally best method to use, quite robust and fast for most
problems

= L-BFGS — Low memory version of BFGS that can be useful for
large systems

= FIRE — More modern method, worth trying for difficult cases

Performance will depend on your application and it is worth testing if you
can speed a calculation up by changing algorithm.



Types of geometry optimisation

= Geometry optimisation — Minimise the total energy by moving
atoms and minimising forces

= Cell optimisation — Minimise the stress tensor by modifying the
cell vectors (lengths and angles)

= Both — Attempt both kinds of optimisation at the same time

Different DFT codes treat geometry optimisation and cell optimisation
differently, some will treat them as different types of calculation (cp2k)
and others as types of geometry optimisation (Castep)



Comparison with experiment
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Comparison with experiment
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Exchange correlation
functionals



Jacob’s ladder of DFT functionals
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Figure 2. The Jacob's ladder of density functional ap-
proximations to the exchange-correlation energy adds local
ingredients successively, leading up in five steps from the
Hartree world (E,; = 0) of weak or no chemical bonding to
the heaven of chemical accuracy (with errors in energy
differences of order 1 kcal/mol=0.0434 eV).

Perdew, John P., et al. "Some fundamental issues in ground-state density functional theory: A guide for the perplexed.” Journal of

chemical theory and computation 5.4 (2009): 902-908.



Local density approximation (LDA)
XC energy is locally approximated with the value of a homogeneous
electron gas of the same density. The computationally cheapest.

ELPA [ = 3 (§> ’ Jn(r)g dr (5)
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GGAs

e.g. PBE, PW91, BLYP

ESCA = EZ%A [n(r), Vn(r)] (6)

= Negligible computational cost increase on LDA, but greater range of
available parameters

= The PBE functional is generally considered to be the best general
purpose GGA

= Other GGAs might be better for a specific purpose, but tend to be
weaker in other areas

= There doesn’t appear to be much scope to make better GGAs (PBE
is from 1996)



Meta-GGAs

e.g. TPSS, SCAN, M06-L

EPSCA = BG4 [n(r), Vn (), V2n(r) T (1)] 7)

m Quite small computational cost increase on GGA, but making
Meta-GGAs that are better than GGAs is incredibly hard. They are
often less transferable

= Earlier attempts like the TPSS functional (2003) have not been
used much in practice

= Newer options like M06-L (2006) and SCAN (2015) seem to be
more promising



Hybrid functionals

E)r:ybrid _ (a)E)I(-lF +(1—a) ESGA [n (r),Vn (I‘)] (8)

e.g. PBEO, B3LYP, HSE

= Use of non-local exchange term is extremely computationally
expensive. Essentially guaranteed to be the most expensive part of
the resultant DFT calculation

= One important choice is how much non-local exchange to use

= Functionals also differ in how they treat long range exchange

m Started out as an empirical method, but now well justified through
the adiabatic connection theorem (e.g. see the hybrid functionals

section of this review
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.3)


https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.3

B3LYP

B3LYP is an empirical functional that has been fitted to reproduce
experimental atomisation energies, ionisation potentials, proton affinities
and atomic energies, for a test set of atoms and simple molecules.

E)I(B;SLYP _ E)I(_DA + a ( E)I(-lF . E)I(_DA) +a, ( EXGGA . E)I(_DA) )

+ELPN + ap (ESOA — ELPM) (10)
The fit parameters are ap=0.20, a,=0.72 and a,=0.81.

= B3LYP is more reliable for lighter elements, as this was what it was
fitto
= The most popular hybrid functional in Chemistry



PBEO

The PBEO functional uses 3—1 exact exchange, which is justified as
corresponding to MP4 theory.
3

1
E)E;BEO _ ZE)I(-|F + ZEEBE + E(I:BE (11)

= Significantly more costly to apply to solids than B3LYP is to
molecules, as it it quite hard to converge with respect to k-points.
(B3LYP would have the same issue if it was applied to solids)

= Probably the most popular hybrid functional in Physics



HSE

The HSE functional is designed to be better behaved with respect to
k-point sampling. Long range exact exchange is turned off using the
parameter w.

EHSE EHFSR ( ) 4 gE)l(DBE,SR (w) + E)l(:’BE,LR + E(l:’BE (12)

m The standard value of w=0.2 is used. The functional would reduce
to PBEO for w=0

= Screening exchange in this way reduces the computational cost
significantly for solids

= Although motivated by computational arguments, HSE does appear
to outperform PBEO for ‘typical semiconductors’



Performance for solids

Table 1. The mean absolute error (MAE) inlattice constants ag (A), cohesive energies

E; (¢V/atom), and bulk moduli B, (GPa)on testing sets of bulk crystals using different density-
functional approximations reported from literature benchmarks®. The mean absolute relative
error (MARE) and the maximum absolute relative error (MAX)are given in percentage.

LDA PBE PBEsol TPSS revIPSS HSEO6

ay MAE 0.071 0.061 0.030 0.054 0.039 0.033
MARE 15 12 0.6 1.1 0.8 0.7
MAX 4.9 2.8 23 4.1 33 2.0

B, MAE 115 122 7.8 9.6 9.6 7.3
MARE 9.4 11.0 7.0 10.3 94 4.0
MAX 328 255 195 29.6 25.8 234

£ MAE 0.77 0.19 0.31 0.20 0.22 0.25
MARE 17.2 5.0 6.9 49 5.1 6.5
MAX 38.7 21.0 2238 15.3 17.7 25.0

* The LDA, PBE, PBEsol, TPSS, and revTPSS dataare taken from [19] (44 solids), and the HSE06
data are from [14](30 solids).

Zhang, Guo-Xu, et al. "Performance of various density-functional approximations for cohesive properties of 64 bulk solids.” New

Journal of Physics 20.6 (2018): 063020.



Performance for solids

Table 4. The ME and mean absolute error (MAE) in the calculated lattice constants ay (A), cohesive energies

E, (eV/atom), and bulkmoduli B, (GPa) of the 64 solids using the LDA, PBE, PBEsol, SCAN, M06-L, and HSEO6 density
functionals, with respect to experimental values. The mean relative error (MRE, %) and mean absolute relative

error (MARE, %)aregivenin parentheses. The maximum absolute relative error (MAX, %) is shown in the last columns,
within the solid marked in boldface using each functional. All quantities include zero-point vibrational effects.

Functional ME MAE MAX
ag L, By a Ey By a Ey By
LDA —0.063 0.85 13.0 0.063 0.85 15.4 49 48.4 46.0
(—1.4) (19.3) 8.2) (1.4) (19.3) (10.6) Ba Fe Fe
PBE 0.056 —0.08 —9.8 0.061 0.21 13.6 2.8 19.4 332
(1.1 (=2.1) (—=9.6) (1.2) (5.3) (1L6) Pb Au Sn
PBEsol —0.010 0.37 3.5 0.030 0.39 10.7 29 315 327
(—0.3) (82) (—0.5) 0.6) (8.9) (7.4) Th Fe Fe
SCAN 0.011 —0.08 4.1 0.028 0.23 9.0 27 174 26.1
0.1) (=0.7) ©.7) (0.6) (5.4) (5.9) Th Mo v
Mo6-L 0.031 0.18 —4.3 0.075 0.27 12.2 6.1 52.8 61.3
0.5) 6.8) (—2.4) (1.4) 9.0) (13.1) Rb Rb Rb
HSE06 0.036 —0.37 1.6 0.042 0.40 122 32 326 35.0
0.7) (-7.5) (-2.5) 0.8) 9.1) (8.6) Rb A v

Zhang, Guo-Xu, et al. "Performance of various density-functional approximations for cohesive properties of 64 bulk solids.” New

Journal of Physics 20.6 (2018): 063020.



Performance for solids
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Performance for solids
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Hybrid exchange

The amount of exchange needed to describe a material seems to be
related to dielectric screening (itself a material specific property)

T T ~_ T T T T
1A PBE

O PBE0 g 7
O se-hybrid o = se-o™"# ™ \\‘\‘ﬂ—i

L 1 i 1 " L " 1
416 1.20 4.22 424 4.26
Lattice constant (A)

Skone, Jonathan H., Marco Govoni, and Giulia Galli. "Self-consistent hybrid functional for condensed systems.” Physical Review B

89.19 (2014): 195112.



Failures of XC functionals

= You can’t mix and match XC functionals in a systematic way, so hard
to describe systems where different XC functionals are appropriate
(e.g. molecule on metal, metal/semiconductor interface)

= Very poor description of long-range interactions, such as van der
Waals (empirical corrections e.g. D3)

= Better at molecular binding energies (does chemical reaction
happen?) than barriers (how fast does chemical reaction happen?)

= Routes to XC functional improvement seem to require calculations
to become really expensive (e.g. double hybrid)



Conclusions

= Density mixing is an important part of practical SCF calculations

= Geometry optimisation can find local minima in the energy
landscape, which may or may not be the global minimum

= Local functionals are computationally cheap and good for many
properties. Difficult to produce general purpose functionals better
than PBE

= Hybrid functionals require significant computational resources, but
offer improved band gaps. However, there is a lot of flexibility in how
much exchange should be included



