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Reaction mechanism
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The recipients

e Walter Kohn

Developed the Density
Functional Theory (DFT), which
became the most widely used
guantum chemistry method due
to its efficiency and accuracy.

* John Pople

Developed numerous algorithms Walter Kohn Johnix:Raple
for guantum chemistry methods.

Main founder behind the

currently most widely used

guantum chemistry software,

Gaussian.



Obtain the solution of the
Schrodinger equation using
approximate methods

HY = EY
Find energies and wave

functions of small to
medium sized molecules

Provide accurate models of
chemical structure and
reactivity

Determine molecular
properties

Energy (eV)
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The recipients
Arieh Warshel

 Worked on force field development
for molecular mechanics in Shneior
Lifson's group at the Weizmann
Institute.

 Developed Quantum
Chemistry/Molecular
mechanics (i.e., QM/MM) method
together with Michael Levitt (1976).

e Performed the first molecular
simulations of enzymatic reactions
in proteins (1976).

* Performed the first protein folding
simulation together with Michael
Levitt (1976).




The recipients
Michael Levitt

Worked on force field development
for molecular mechanics in Shneior
Lifson's group at the Weizmann
Institute.

Developed Quantum
Chemistry/Molecular

mechanics (i.e., QM/MM) method
together with Arieh Warshel (1976).

Wrote the first software to perform
molecular dynamics simulations of
DNA and proteins.

Performed the first protein folding
simulation together with Arieh
Warshel (1976).




The recipients
Martin Karplus

Force field development for
molecular mechanics collaborating
with Shneior Lifson's group at the
Weizmann Institute.

One of the first computational studies
of biological systems.

Main founder behind CHARMM
(Chemistry at
HARvard Macromolecular Mechanics)

Pioneered QM/MM simulations, and
developed numerous methods for
computational modelling of biological
systems.




Their work enables us to

* Find the structures of
complex biomolecules by
calculating their Newtonian
dynamics

* Find reaction mechanisms of
enzymes

 Model and predict structure
and function of biological
systems




MM and MD and QM/MM

Molecular Mechanics (MM) describes an empirical
potential energy function (U) that allows us to
calculate the approximate energy given as a
function of the atomic positions.

Each atom is represented explicitly, together with
its partial charge (q;), radius (r,), and the list of all
other atoms it is bonded to (with b, bond length).

Bonds cannot break and cannot form.

Molecular Dynamics (MD) defines the movements
of the atoms classically, using Newton’s equation of
motion on a given potential energy surface.

The potential energy surface for MD can be defined
by MM, (which is an approximation of the quantum
mechanical energy of the system), or by the
approximate solution of the Schrodinger equation
using quantum mechanics (QM) methods.

The potential energy can also be a combination of
QM and MM by defining two sets of atoms, a QM
region and an MM region, and accounting for the
electrostatic coupling between the two
subsystems. In the QM region bonds can break and
form.

U T (-b3 + T 007 T
+ T Ky[1-cor(nped)]
+ Z el ()20

+ 2332949 /v 1
All partial charae:




Computational
Methods

« QM/MM implementation with Q-Chem
+CHARMM using full electrostatic
embedding
Woodcock et al., J. Comp. Chem., 2007

 DFT B3LYP method (6-31+G* basis)

* Free energy calculations of the reaction with
enhanced sampling methods: Hamiltonian
replica exchange coupled with finite
temperature string method




Umbrella Sampling

Run parallel
simulations with
harmonic constraints
moving along the
reaction coordinate

Recover the unbiased
free energy surface
from combined data
using e.g., WHAM

Free Energy (kcal/mol)

Ei (qA) :Upot (qA)+%ki (é:A _é:i)z

-2 -1 0 1 2
Reaction Coordinate (A)



Monte Carlo Methods

Stochastic methods for enhanced
sampling
Using replica exchange (REMD) and
simulated tempering (ST)

How does it work?

How to use it best?

How to interpret results?
How useful/efficient is it?

| D N I |
w1 0] J1]l

E. Rosta and G. Hummer, JCP, 2009 o but e
E. ROSta and G Hummer’ JCP’ 2010 DT 0 150 200 250 300 30 400 450 800

Simulation Time




Statistical sampling

* Generate a random walk (throwing darts):
{Xos X0y o0 Xy

 Average property of interest:
1 n
(A)= HZ A(X;)
i=1

1 ifinside circle
0 if outside circle

A(Xi) :{

* Obtain the area within the circle (<A>)
from random walk!



Metropolis Monte Carlo

A way to evaluate multidimensional integrals, such as partition functions and
thermodynamic properties:

Jdr Ae kT g ~Y/keT
Z :Idf e—U/kBT <A>= J.dz_e_U/kBT Z.[dTA Idfe_U/kBT

AEAN
call

2000

1500 +

1000 -

500

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Journal of Chemical Physics, 21(6):1087-1092, 1953



Metropolis Monte Carlo Algorithm

|.  Randomly generate a new configuration.

II. Accept or reject the new configuration based
on the Metropolis criterion:

| { 1 for A<0 }
T(X—>Xx)=

exp(-A) for A>0

where A= ﬁ (U (x)-U(x))

B




Stochastic methods: Transition rule

Generate random walk: oV (/g U (kT

{XO,Xl,...,Xn} ? p(X):J‘eu(x)/kBTdT: 7

Transition rule for T(Xx —>X")
Time reversible
Conserves equilibrium probabilities ( p(x) )
T (X — X") has to be between 0 and 1 (probability)

P(X)T(x— x") = p(x)T(x'—> x) detailed balance condition

T(x—=x) _ P(X) _ quo-veopker e-gﬁ;ﬂ){ T(x'—>x)=1
T(X'—>Xx) p(x) T(X— Xx') =exp(-AU /k,T)
Results in maximum number of transitions
Modify random walk according to transition rule & obtain averages:

x" 1f the transition is accepted 1
w= N = (A)==2 A(X)
x 1f the transition is rejected N4



Replica exchange

Temperature (T)

350

340
[

Cad

el

=
—

320 l-

L]

310

1

300

290

Simulation Time

K. Hukushima and K. Nemotto, J. Phys. Soc. Japan, 1996

0 50 100 150 200 250 300 350 400 450 500

Running MD at different
temperatures in parallel

Couple the runs in order to
speed up lowest
temperature’s dynamics

Preserve P, at each
temperature

Detailed balance condition
has to be satisfied

o\



Replica Exchange Procedure

« Each replica is simulated simultaneously and independently for
a certain number of MD or MC steps

« Pick some pairs of the replicas at neighboring temperatures
and exchange the configurations according to the following
acceptance rule:

1 for A<O0 }

T(X, X7 > X', %) =
O X ) {exp(—A) for A>0

where  A=(1/K,T —1/k,T YU (x) -U (X)]

T(XT ’ X'T' — XIT , XT') _ Pr (XI) pT'(X) _ e—[U(X')—U(X)]/(l/kBT—l/kBT )
T(X X = %, X)) Pr (9)Pr(X)




Simulated tempering (ST)

Only a single replica

Changes the temperature of the 340||[|[|I| I I |J |IJI |'|[I Tl
simulation stochastically

Preserves P, at each
temperature

Obtain partition functions (2) -

—IT A
, ] [ 7 Wt bl
iteratively

20 700 750 200 250 300 350 400 450 500
Simulation Time

29

TXT—>xTY) p(x) ek 7
TXT = xT)  pr(x) AN

A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov,
and P. N. Vorontsov-Velyaminov, JCP, 1992
E. Marinari and G. Parisi, Europhysics Letters, 1992



State Assignment in Protein Folding
Simulations

Replica 2 trajectory

Master equation ol MM I
8 I
dP N \ 7
G O=2k PRO-Xk RO g SpteU
j=1 J=1 I |
(j=i) (=) w | m[ﬂ L |
2 WY State F
e

Levy PNAS, 2007

ky (T)
Ke (T)

= | 2 >U

Voelz, Bowman, Beauchamp and Pande, J. Am. Chem. Soc., 2010



Kinetic model

Single Temperature:

Inc(t)) (log of the correlation function)

05¢

25F

ky (T)

F <

Ke (T)

It T=300K

(%)

(s(t)s(0))—(s())’
(s(t)*)—(s(t))’

407200 200 500 800 1000 1200 7400 1600 1800 2000
Simulation Time (ps)

c(t) =

2]
o

>U

K

’ﬁ:wﬁ‘\w

|

—k,
Ky

Ink (ns™1)

Folding rate, ke

Unfolding rate, k|,

4
300

I(F
—k,

|

350 400 450 500 550 600

T(K)

— i:ﬂ“rel = ku (T)+kF(T)

Z-rel



Replica Exchange Rate

MD: T=350K

N S e
UF == UU
kp(13) ol
elle 7k
H | = Sl 2 5
B U‘H T FU £ o4
k() 1Y _ MD: T=300K
L} 0.3
FI: ke (13) FU 0.2 '[
Pocc UiF; —U R o
kRE UiFj _>UJ'|:i — 7 4 &5 @8 10 2 W 1 8
6txc kREMD
- ku(Tl)‘|'ku(T2) kF (Tl) kF (Tz) 0
ku (rl) - kF (r1)+ku(rz)+k;5 kF;E kF (Tz)
kU (rz) k;E - kU (Tl)—l_kF (TZ)—I_kF;E kF (r1)
0 kU (rz) kU (rl) o kF (rz)‘l‘kF (Tl) |




Collective replica exchange coupled
states

UFl a— [JUJlJ
N4

FUF — UUF

FF%—* UFU e N temperatures

FF2 Y > FU FFF/ \ ./ (2N microstates)

UFF

A\ 4
™M

[y
A 4

AN

N
,ZN

N

FFU FUU
UF
FF :)(FUJ(:)UU FFF —(:[FUF}—(_—){UFU}—(_—)UUU 20 <
UFF UUF

How to solve the eigenproblem of the rate matrix & find the eigenvalue A ?



Kinetic Theory: Continuum
Limit

Smoluchowski equation for Analytic solution for the slowest
diffusion in a one-dimensional relaxation rate of the system:
harmonic potential
D Knmax_llnmax
A=—= 2
2 03 o o
2 0.25/
9 N
g' 0.2 Z/I(Ti)pF (Ti)pU (Ti)
= 0.15¢ Aremp = = N
0
= 0.1 Z Pe (Ti) Pu (Ti)
1 0.05 =

0 2 4 6 8 10 12
Number of states folded

A AN AN
O/ /1/ / eee 4 /7
N\ N\ N\

Exact for N — oo and k. — oc.




Folding/Unfolding of Ala.

10°

All-atom simulations of Ala:
in explicit water

State correlation function of
all temperatures: =

(s(t)s(0)), —(s(v)),

c(t) = 5
s(t)?) —{s(t
< ( ) >T < ( )>T Temperatures .
0 5507000 7500 3000 200 3000
Time (ps)

Fit for A matches the N
prediction perfectly using Zl‘/l(Ti) P (Ti) Py (T5)
the corresponding Arenp =

folding/unfolding rates! > e (T)py (T))

i=1



Efficiency of Replica Exchang

01 T T T

2 2 # Simulation
_ GMD ( Ntsim ) JMD (tsim ) 0.08 —— Fast limit

77 = o 0.07- + Continuum limit

2 2 ——NMD
ORremD (tsim ) N eemp (tsim ) g 006/

2 (t ) 2 pFl pu1 0.02 \
sim t N 0.01 .
sim ﬂl Z p k | | | | |
KU, %300 310 320 330 340 350
i=1
i

Temperature [K]

ot (1 )= 2 Pz By, NB: Ky,
REMD sim t N
sin " pe Ky Average number of
i1 f transitions over all

Number of transitions At " PC! AUres

target temperature (T,)



Simulated tempering (ST)

Only a single replica

Changes the temperature of the 340||[|[|I| I I |J |IJI |'|[I Tl
simulation stochastically

Preserves P, at each
temperature

Obtain partition functions (2) -

—IT A
, ] [ 7 Wt bl
iteratively

20 700 750 200 250 300 350 400 450 500
Simulation Time

29

TXT—>xTY) p(x) ek 7
TXT = xT)  pr(x) AN

A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov,
and P. N. Vorontsov-Velyaminov, JCP, 1992
E. Marinari and G. Parisi, Europhysics Letters, 1992



Kinetic model of ST

Full kinetic scheme

Fl (—kU1 U 1
0 0

Key
F,

Kuy
p—

ke

|:N UN

With appropriate ST rates between
temperatures that preserve detailed
balance and achieve the desired Q;-s,
the average relative time spent at T::

Q = p(Ti)

(o)

Coarse grained kinetic scheme in the
limit of fast temperature changes:

k" \ eff
Feff o >U i A =K
F

eff "
F U

With previous notations for Pg;, using

local equilibrium approximation:
N

N
Z Ke; Qi Py, Z Qi PR

eff j— eff i=1

F ~ N uoT X
Z Qi Pu: Z Qi Pr
i=1 | =1
2 D 2 &1 ke Tk,
st = VI 1| = M P
Pr TPy, o Q ke Ttk

Identical efficiency with the
corresponding RE!



Application to 2D Ising model

relaxation timet

2D Ising model using MC simulations:

H =—;0'i0'j (o, =%1)

temperatureT
2.4 2.3 2.2 2.1 2.0
10000 f
1000 ¢
1
u 1
0 1 3 4 5
10 . . time [10° MC passes]
0.42 0.44 0.46 0.48 0.5
T
10
8 L
=
2 6t
«5]
5
sy 4
=
T2
T=2.4
0 ;

0
magnetization m per spin

Temperature autocorrelation functions
using predicted (dashed lines) and actual
(solid lines) relaxation rates. ST
simulations with N temperatures and
constant temperature spacing.

1 S,

0.1}

autocorrelation of temperature

MN=8/jum]

0 5 10 15 20 25
time [MC passes]

‘ (t) = &P _%T N 10 Pacc




Application to 2D Ising model

Autocorrelation function of the magnetization

(solid lines) compared with the effective
relaxation rate from the fast limit (dashed
lines).

T, represents ST simulations using N
temperatures with upper temperature T,

autocorrelation of magnetization

0 200 400 600 800
time [MC passes]

¢ (t) = exp (—2°"t)

1000

sampling efficiency

The error of estimating the folded
populations quantitatively agrees with the
formula for the fast limit for both RE and ST.

number N of ST temperatures or REMC replicas
1 2 3 4 5 6 7 8 9 10

1[][} T T T T T T T T
Formula
ST W
REMC &
10 b

T-|=2 2.1 2.7 2.3 2.4
upper temperatureTy,
-1 -1
N
1 kFl + kUl

= ZQi ke " +ky,

i=1



For optimal RE/ST:

— Target temperature should be the
lowest

— Highest temperature should be where
number of transitions is the highest, if
applicable

— Use as many replicas as can be
afforded, but still be in fast exchange
limit

— Exchange should be fast, attempts
should be as often as possible

— Well chosen nonuniform temperature
distribution is more efficient

If ke(T) and k(T) are known, the kinetic
matrix can be solved and the
temperature range can be optimized for
exact numerical solution.

Efficiency (n)

A repressor

300 350 400 _450 500 550 600
T oK)



Questions?

350

* Monte Carlo methods to
sample phase space 340

* Enhanced sampling
methods with MC-based
algorithms to enable faster

(%]
Cad
L

Temperature (T)
[ %]
r~a
[ ]
—

sampling o (] JT | Il

* Hamiltonian is not modified, | - | -
no artificial forces besides 300 .
temperature — this is also a _— .., e
limitation and Hamiltonian- DS etene D

based H-REMD methods can
be powerful in many cases



Umbrella Sampling

£, (00) =Yy (00) + 5K (604

Run parallel
simulations with
harmonic constraints
moving along the
reaction coordinate

Recover the unbiased
free energy surface
from combined data
using e.g., WHAM

Free Energy (kcal/mol)

-2 -1 0 1 2
Reaction Coordinate (A)



WHAM

Nbin

ot o ()
i—[h( <k>)

(k)
C P

k)

(k) — £ (K)ak)
b =0T =5

2.6"P,
j=1
¢ =exp(-ul /k,T)

NSim Nbin

Probability of observing a trajectory
in the k-th simulation.

(k)
P Equilibrium probability for bin i

n . L.
i Histogram count in bin i

@L Msim
=0 > n
_ k=1
pi ~ Msim
oL 0 Z NOfO0
8pl 1=1 |

L= [T](f%e®p,)" +st"’j/1<k> (1 sz: f e p.j

k=1 i=1



Free Energy (kcal/mol)

Umbrella Sampling Simulations & WHAM

0.12+

O
—

Probability Density

0.2 0.4 06 08 1 1.2 1.4 0 0.5 1 1.5
Reaction Coordinate Reaction Coordinate

MC simulations

7 Umbrellas with 50 kcal/mol biasing force each



Free Energy (kcal/mol)

Systematic error when using WHAM in
conjunction with small biasing force

10
0.2]
—WHAM
8r —EXACT |
I 0.15]
6
S
4 S 017 '-
o :
o
2 0o 3
0.05| A ‘ 7
% 02 04 08 08 1 12 14 16 0 05 1 1.5

Reaction Coordinate

Reaction Coordinate

6 Umbrellas with 50 kcal/mol biasing force each
1t Umbrella with 1 kcal/mol biasing force



DHAM: Dynamic Histogram Analysis Method

Nbin Nbin
a1 (0N
=1 j=1
NSim Nbin Nbin
L= TTTTT(Me)"
k=1 1=l j=1

(k)
C:.’M .
M ) = f|(k)C§ik)Mji ji i

JI

Npin

(k)
chi M,
=1

Mszlm (k)
T!

ji Msim

Z n(k) f (k)C(k)

M

Biased Dynamical
Trajectories

Histogram
of Transitions

Markov Model

Free Energy
& Kinetics



DHAM: Dynamic Histogram Analysis Method

0 —y® 4 y® _y© :
0 &P| | (X =)+ — | 4Dr
j i
(

]

VIO ©) 7
o P(x o) eXp(_£<Xj_Xi)+7Tu§0) U'O)j /4Df}
X; =X
(u(k) —u(k))—l— ]/T(UEK) _ui(k) )2 . yf(ugk) _ui(k))(ugo) _ui(O) ) \
PLX — X, )(k) j | 2(xj —xi)2 (xj — X )2
=exp| —
p(xi —>xj)(0) 2Dy

VAR
M—J(Io) = £ ~ eXIO(—(uﬁk) —ui‘k))/ 2kBT)

ji



DHAM: Dynamic Histogram Analysis Method

Msim

T
\ Z M (K

ji Msim

JI

(k) (k) (k) (k) (k)
M p| _f C M pi

i _ £ 00600 & ayn(— (100 _y®
e |\/|(__°)_fi o ~exp( (uf -y, )/2kBT)

£OcOM . p® exp(—ul /k,T)

(k) (k) (k) (k) k) —
Mij P; f Ci MIJ P;

=1
fj(k)Cigk)l\/Iij p}” exP(_UEk) /kBT)

J

Nbin

Msim
ZTj(ik) ZMijpj:pi
[\ unnorm _ k=1 j=1

Msim

> n®exp(—(ul —u)/2k,T)
k=1

r =-1/In4,



Free Energy (kcal/mol)

Error (kcal/mol)

Probability Density

Umbrella Sampling with small biasing force

0.81
0.61
0.4r
0.2r

b,),,1I.‘..|....|..‘.l....|....|.‘..|....

-0.2r

_0‘4_...‘|.‘..|....|..‘.|.

0.11

0.051

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Reaction Coordinate

10

Free Energy (kcal/mol)

Error (keal/mol)

= |
— —

Probability Density

—— WHAM

—— DHAM

0.057

lﬁt“,; '

0.2 0.4 0.6 0.8 1
Reaction Coordinate




“Downhill” unbiased
non-equilibrium trajectories

Msim © 8
_ k=1
Mji ~ Msim 0 6L 4
2N =gl |
k=1 2
Nbin =
_ 3 -
2 Myp=p &
j=1 8 20 I
&
g ‘
0_ —
1t -
_2 ] ] ] ] ] ] ]
0 02 04 06 08 1 1.2 1.4

Reaction Coordinate

1.6



MD simulations of a Na* in an ion channel

Langevin dynamics MD simulations of the passage of Na* through the transmembrane pore of
the GLIC channel.

4r — WHAM
— DHAM

Free Energy (kcal/mol)

_4 ! ! ! |
-40 -20 0 20 40

x (A)

Simulation data from: Zhu and Hummer, PNAS 2010, JCC 2012



Free energy (kcal/mol)

Umbrella sampling QM /MM simulations of

catalytic factions

Reaction coordinate (A)

o e
.- 1 z;c:))?: [ - ,\,7% ,/H Arachidonic Acid
. —CH_ r
“‘é‘ g\H ILli:’: \\/@O "> O H
207 ‘ < d
x—e ¢ . /\ {\CHZ ||| "SH
¢ YA —DHAM N, .
Il \ ‘\(NHSﬂX
sy
10T ’
HN\g\! VAR
(0)
0_
Hydrogen abstraction from
arachidonic acid in the
-102 1 (‘) 1 catalytic reaction of human

15-LOX-2 lipoxygenase.



Umbrella sampling QM /MM simulations of

catalytic reactions
201 -
3
=
= 10f
g
=
5 o
£
10 ' ' '
-2 -1 0 1

Reaction coordinate (A)

R. Suardiaz, et al, JCTC, 2016

Lagtime ___|Rate

1fs 0.24 s1
10 fs 0.17 s?
50 fs 0.29 s1

Experimental k., = 0.7 s1
k — Ae—AG:I:/kBT
k=0.22 s @T=300K
Calculated prefactor using
a barrier of 18.7 kcal/mol.:

A =8.6x10% s

KsT/h = 6.3x1012 571



Membrane Permeability

) NOVARTIS

Dickson, Hornak, Pearlstein, & Duca, JACS, 2017 PHARMACEUTICALS



Membrane Permeability

* Umbrella sampling simulations for 7 drugs
Calculated rates for entering, crossing and exiting the membrane
match unbiased MD

* Matching the experlmental permeabllltles closely as well

Domperidone Labetalol

ok o on
QJ\\ ¢ ﬁ@r““r\g

Loperamide Verapamil

cl
OH o=
- /
(¢}
| N N |
N NV\@O\
° ) v

Desipramine Chlorpromazine

\

Qe R

N_/_/ S N—/_/
Propranolol o

e

k — Ae—AG:I:/kBT

2

- ¢ Biased (r?=0.937)

} Unbiased (r?=0.924)
Experimental results

1

0

1l 1 :
2_

3

Free energy (kcal/mol)

Calculated Log(Perm)

Distance from bilayer centre (A)

A=~108st vs. kgT/h=6.3x10% s

i i

- 4
&= 4
g 2
g0 5
2
§ -4 _6 | | | 1 |
f%’-e 3 25 2 15 1 05 0 0.5
o -8 Experimental Log(Perm)
I -10t

-12

-40 -20 0 20 40




Intramolecular electron transfer

GSatTS
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Career Options

* D. E. Shaw & Co. assets of
USD 40 billion

* PhD Stanford

* Assistant Professor at Columbia
(1980)

* Works for Morgan Stanley (1986)

* Founds the hedge fund company D.
E. Shaw & Co. (1988)

* Founds his own research company:
D. E. Shaw Research

David E. Shaw



M Inbox | X MATL x ' [@ www.c x ' o5 CECAN x ' @ PyDat: x | EJdesh: x / D.E.SI X D.ESI x { B desh: x ¥ \WDavid! x | WD.ES % DES_sc X

C | www.deshawresearch.com

D E Shaw Research

About D. E. Shaw Research

D. E. Shaw Research ("DESRES") is engaged in scientific research in the field of ¢

= The design of novel algorithms and machine architectures for high-speed n
of proteins and other biological macromolecules. In particular, we have des
supercomputer called Anton, which executes such simulations orders of m:

possible, along with a number of software tools and techniques that facilite

» The use of long MD simulations to study the structural changes underlying
time scales far in excess of those previously accessible to computational st

significantly advancing the process of drug development. We have been in

mechanisms of certain cellular receptors, transport proteins, and enzymes

potential treatment of cancer, diabetes, and other diseases.

Members of the lab include computational chemists and biologists, computer scie
and computer architects and engineers, all working collaboratively under the dire

Scientist, David Shaw.
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Molecular Dynamics simulations

Fig. 1 Representative structures of the folded state observed in reversible folding simulations
of 12 proteins.
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Fig. 2 Formation of topology, native contacts, and secondary structure during protein folding.
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