
Motivation 

Lots of  interesting properties require 

knowledge of  free energies: 

• Phase diagrams/coexistence.

• Drug binding affinities.

• Rates of  reactions.

• Equilibrium constants.

• Solvation properties.

• Acid-base equilibria.

• Isotope effects.

2 Presentation from Tom Markland



Statistical Mechanics 

Momentum part Position part 

Recap 

Partition function in classical mechanics, 

Position and momentum integrals are separable, 

Yielding the configuration integral, 
Today we will 

primarily deal with 

this. 

Observables obtained performing trajectories which sample points in the ensemble and averaging 

the observables over them (assuming ergodic hypothesis),  

If  observable depends 

only on position. Expectation value of  observable O 
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Simulations 

Basic simulation scheme 

Get energy/forces 

Pair/Empirical 

Ab initio 

Evolve system: 

Monte Carlo  

Molecular Dynamics 

Calculate observables 

energy, pressure,  

structure etc. 

Repeat until 

average of  

observables are 

converged. 

Initial Structure 

From known 

crystal structure or 

starting from 

lattice and 

equilibrating. 
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Free energy from statistical mechanics 

How to obtain free energy? 

• Not good news: to get an absolute free energy of  a system we need to know the

entire partition function i.e. to count all the states for a given N,V,T!

 In practice calculating the partition function is impossible for a system of

more than a few degree of  freedom (with the exception of  special cases). 

For simplicity everything will be presented in terms of  Helmholtz energy A (i.e. working in 

the NVT ensemble) but extension to Gibbs (NPT) is straightforward.   

• However, calculating differences in free energies is possible.
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Free Energy Perturbation 

• The above expression is not in a nice form to extract from a simulation. 

Inserting 1 Rearrange 

Now take ratio, 
Of  the form: 

Free energy perturbation (FEP) 

(Zwanzig 1954) 
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Free Energy Perturbation 
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What does this translate to? 

• Do a simulation of  system 0.

• During the simulation accumulate the average:

• At the end take the natural logarithm of  the observable

and multiply by –kBT  and you obtain the free energy

difference between system 1 and 2.

Example: 

I want to develop a new drug that binds into an active site more strongly 

than my current drug.  

Can I do this by replacing a Hydrogen by a Methyl Group? 

 Potential V0 is force field with H and V1 is that with Me. Hence can use 

FEP to calculate the difference in free energy of  binding. 



Free Energy Perturbation 

Unfortunately FEP is not perfect 

• Suppose the two potentials (V0 and V1) are very different.  

• Consider in 1D two systems with different potentials: 

x 

P(x) 

In this region 

is small but potential V0 samples it a lot. 

V(x) 

V0 
V1 

Potential 

Probability 

In this region 

is big but potential V0 samples it very little. 

Remember in FEP we do a 

simulation in potential V0 

and accumulate the average 

of    

x 
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Free Energy Perturbation 

x 

P(x) 

V(x) V0 V1 

Potential 

Probability 

So what happens when we do a simulation? 

Do a simulation in potential V1 and accumulate the average of    

Simulation time/ MC steps 

Massive jumps in expectation value correspond to the rare events of  entering a region where 

potential V2-V1  is small giving rise to a massive contribution to  

x 
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FEP fails when the difference potential                       shows a 

large standard deviation compared to     . 



Free Energy Perturbation 

Analysis: Proc. Roy. Soc. A 468, 2-17 (2012). 10 

How to avoid this problem? 

• Good news: free energies are state functions.

i.e. they only depend on the current state of  

the system and not how the system acquired 

that state. 

• This allows us to take any path between the two states

we are interested in whether or not the intermediates

represent anything “real”.

0 

1 

Hence we can break the journey from transforming from potential V0 to V2 by splitting it 

into M sections: 

We can then calculate the free energy change for each section and add them together to generate 

the total free energy change on going from 1 to 2: 

V0 V1 

V0.2 V0.4 V0.6 V0.8

Here M=5 



Free energy from statistical mechanics 
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How does one pick intermediate potentials (V0.2, V0.4 etc.)? 

General expression for making M steps between start and end-point 

• In principles could pick anything.  
 

• However, if  intermediates are widely spaced or take a long path between the two end 

potentials then evaluation will be inefficient. 
 

• Hence a wise choice might be a linear interpolation between V0 and V1.  

V(x) V0 V1 

Potential 

x 

V0.5 

Inserting a middle state which has overlap with both V0 and V1 allows 

for much more efficient estimates of  the free energy difference. 

When λ=1 all potential 

1 and when λ=0 all 

potential 0. In between 

a mixture of  them.   



Thermodynamic Integration 

Another approach is to use thermodynamic integration 

Define a potential: 

Note: Although f(λ) = (1- λ) and g(λ) = λ are a valid choice one can pick other forms that 

satisfy the above constraint. 

As before we want to calculate the free energy change between two potentials V0 and V1. 

Where f(λ) and g(λ) switch between the potentials V0 and V1 and satisfy: 

• f(0)=1, f(1)=0, g(0)=0 and g(1)=1

• The free energy is now a function of  the phase point (N,V,T) and the parameter λ

• Taking derivative of  A w.r.t. λ yields:
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Thermodynamic Integration 
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What is                ?  

Combining gives β cancels kBT 

Recognize this is of  form: 
Relates change 

in potential 

with change in 

free energy. 



Thermodynamic Integration 

Adiabatic free energy dynamics: J. Chem. Phys., 116, 4389 (2002) 14 

Integrate 

Thermodynamic integration: 

Kirkwood (1935) 
If  we choose: 

More advanced techniques (beyond this course): Adiabatic free energy dynamics 

• Allow λ to evolve continuously in the simulation by including it as an additional coordinate

which is dynamically, As long as this coordinate moves much slower than the system relaxes

(adiabatic separation) one can obtain the free energy from one simulation.

Implementation 

• Perform a series of  simulations at different values of  λ to get the gradients:

• Perform the integral of  the gradients by midpoint rule or other numerical

integration schemes.



Free energy along collective variables 
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Energy 

Collective variable 

• In many cases in chemistry one is interested in the probability of  finding a particle at some particular

point along a single coordinate of  the system called a collective variable, R(r).

• The collective variable can be defined as a general function of  any of  the positions in the system r.

• For example in transition state theory a key input is knowing the probability of  reaching the top of  the

barrier along the “reaction coordinate”.

Example: to calculate a transition 

stat theory prediction of  the rate of

hydrogen diffusion through ice one 

can compute the free energy 

associated with moving the H 

between the 6 O’s defining ice’s 

hexagonal lattice. 

• Although we will refer to R(r) as a

collective variable (CV) it can also be

called an order parameter or reaction

coordinate.



Free energy along collective variables 
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Probability of  obtaining a given configuration: 

Consider a system where one coordinate R (which can be a complex function of  all coordinates 

in the system i.e. R(r)) is constrained to hold a particular value R* but all other coordinates are 

distributed according to Boltzmann, 

It follows the probability distribution along the coordinate is given by, 



Free energy along collective variables 

Figure: Ann. Rep. in Comput. Chem. 6, 280–296 (2010) 17 

Constrained 

partition function. 

Recall, 

In practice we are (like before) more interested in differences in free energy in going from one 

position along the coordinate R to another e.g. R0 to R1. 

Really useful equation: allows one to convert a histogram of  probabilities along a particular 

coordinate to the free energy change associated with moving along that coordinate. 

Potential of

mean force 

and hence 



Free energy along collective variables 
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Example 1: 

Radial distribution gives probability of  being found a given distance away from a 

particle at the center.  

g(R) 

A(R) 

V(R) 

R 

E
n

e
rg

y
 

Using: 

Note: The free energy as a function of

particle separation, A(R) is not the 

same as pair potential, V(R) unless 

only two particles are present. 

Can convert probability 

to a free energy change 

as a function of  particle 

separation.  



Free energy along collective variables 
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Example 2: 

Can also extend to more constrained dimensions e.g. the Ramachandran plot of  

alanine dipeptide shows the free energy as a function of  two torsions angles of  the 

molecule. 

In both this and the previous case the problem is sufficiently simple that one can run 

for long enough to see point in all regions of  interest  suppose there is a high barrier? 

Red regions are 

low free energy, 

blue is high free 

energy. 



Free energy along order parameters 

Methods of  obtaining free energy when high barriers are present 

Umbrella sampling 

• Add an additional force to the potential to keep

the system close to a particular value of  the CV,

R* e.g. a harmonic force.

• The biased simulation can then be converted

into an unbiased probability by using techniques

such as WHAM1 or umbrella integration2.

Umbrella sampling: Torrie and Valleau, J. Comput. Phys. 2 187-199 (1977) 20 

• One can also use hard constraints to perform molecular dynamics

with the collective variable held at one position.

• The free energy is then obtained by integrating the average force in

the direction of  the collective variable.

• This gives rise to the name “Potential of  mean force” for  . 

Hard constraints 

Energy 

R = Collective 

variable 

R* 

1.) Kumar et. al. J. Comp. Chem. 13, 1011 (1992)  

2.) Kästner and Thiel, J. Chem. Phys. 123, 144104 

(2005)  

Umbrella 

potential 

Caveat: Can also get an 

additional term due to the 

Jacobian of  the change into 

generalized coordinates 

(depends on form of  R). 



Metadynamics 

Video by Giovanni Bussi showing metadynamics in action: 

https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA 

A more recent approach to obtaining the free energy along an order parameter is 

metadynamics. 

Basic idea 

• Each time a position along the order parameter is visited place down a Gaussian to “fill up”

the potential.

• The Gaussians placed bias against revisiting the same region over and over.

• At the end of  the simulation the probability density can be obtained simply by looking at

the density of  the Gaussians placed at each position along the collective variable.

Metadynamics: Laio and Parrinello PNAS 99 (20): 12562–12566 (2002) 21 

Energy 

Collective variable 

Place Gaussians on places 

previously visited Note: to obtain the free energy 

accurately the rate at which the 

Gaussians are dropped must be 

slow compared to the rate at which 

the other coordinates move.  

https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA
https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA
https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA
https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA
https://www.youtube.com/watch?feature=player_embedded&v=IzEBpQ0c8TA


Phase coexistence 

Gibbs-Duhem: Kofke Mol. Phys. 78, 6 1331 (1993)  Phase Diagrams: C. Vega et. al., Faraday Discuss., 141, 251-276 (2009) 22 

• Suppose we know a coexistence point of  two phases.

• Can we trace the rest of  the phase diagram from one

coexistence point?

 Yes, by Gibbs-Duhem integration 

• Integrate the Clapeyron equation numerically:

TIP4P/05 

TIP3P 

Model 

Experiment 

Model 

Freezes to Ice II. 

Hexagonal ice 

only stable at 

negative pressure! 

Experiment 

Run NPT simulations of  each phase at the 

current point and calculate difference in 

enthalpy and volume. Use that to obtain 

new coexistence point and repeat. 



Summary 
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Books: 

D. Frenkel and B. Smit , Understanding molecular simulation: from algorithms to 

applications 

M. E. Tuckerman, Statistical mechanics: theory and molecular simulation 

M.P. Allen and D.J. Tildesley, Computer simulation of  liquids 

Thanks for listening. 




