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1 The need to go beyond density-functional theory

1.1 Motivation: photoemission spectroscopy and measuring quasiparticle energies

Density-functional theory (DFT) is a hugely successful theory of materials. It can predict many properties
in a wide range of materials with high accuracy, including lattice constants, vibrational properties, bulk
moduli and cohesive energies. But there are some properties that DFT predicts less accurately, such as
band gaps, electron affinities or absorption spectra. To understand why this is the case, let us start by
considering a photoemission experiment.

In photoemission spectroscopy, a sample is exposed to photons with an energy h̄ω (with h̄ denoting the
reduced Planck constant). By the photoelectric effect, photons can transfer so much energy to electrons
that they are able to leave the material. Their kinetic energy Ekin can then be measured by a detector, see
Figure 1. To understand what information can be extracted from a photoemission experiment, consider
energy conservation: the sum of the energies of the photon and of the material (containing N electrons)
before they interact must be equal to the sum of the energies of the material after the interaction (now
containing N − 1 electrons) and of the escaped electron (often called the photo-electron), i.e.

EN,0 +h̄ω = EN−1,λ + Ekin. (1)

Here, we have assumed that the material is initially in its ground state with energy EN,0. After the material
has interacted with the photon, it can end up in an excited state λ with energy EN−1,λ.

Rearranging Eq. 1 such that quantities that are measured (the kinetic energy of the photo-electron) or
controlled by the experimental setup (the photon energy) are on the left hand side yields

h̄ω − Ekin = −(EN,0 − EN−1,λ) ≡ −ϵλ, (2)

where we have defined the quasiparticle energy ϵλ = EN,0 − EN−1,λ which is the difference between the
total energy of the N-electron system in its ground state and that of the N−1-electron system in the excited
state λ. In other words, photoemission spectroscopy measures quasiparticle energies.

“What is a quasiparticle?”, you might ask. Instead of viewing the material after it has lost an electron as
an N − 1-electron system, we can also view it as a system with a single missing electron or hole. This hole
behaves in many ways like a real particle: for example, its motion results in an electrical current. Unlike
a real particle (say an electron in free space), however, the hole has a finite lifetime: because electrons
interact with each other through Coulomb forces, the hole can lose its energy and momentum through an
Auger-like decay process in which an electron-hole pair is created in the material. This is why we call it a
quasi-particle or quasi-hole.

Another type of quasiparticle is created when an extra electron is added to a material, i.e. when an
N + 1-electron system is created. Again, we can view this system as containing a single quasi-electron.
Such quasiparticles are measured in inverse photoemission spectroscopy when a sample is exposed to
an electron beam and the outcoming photons are detected. In scanning tunnelling spectroscopy, electrons
or holes can hop from a sharp tip onto the surface of a material thereby creating either quasi-electrons or
quasi-holes.
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1.2 Calculating quasiparticle properties

To gain insight into the electronic structure of materials, measured quasiparticle energies are often com-
pared to Kohn-Sham (KS) energies ϵKS from DFT calculations which can be obtained by solving the KS
equation [

−h̄2∇2

2m
+ vnuc(r) + vH (r) + vxc(r)

]
ψKS(r) = ϵKSψKS(r), (3)

where vnuc(r), vH (r) and vxc(r) denote the potential from the nuclei, the Hartree potential and the exchange-
correlation potential, respectively, and ψKS(r) is the Kohn-Sham wavefunction. This comparison between
experimental quasiparticle energies and calculated KS energies might surprise you. First of all, you might
remember that DFT is a theory of the electronic ground state, i.e. it produces EN,0, but not EN±1,λ and hence
it cannot yield quasiparticle energies. Moreover, the non-interacting KS electrons are merely a convenient
mathematical tool for describing the “real” interacting electrons and therefore we should not compare their
energies (or wavefunctions) to experiment 1.

Indeed, the quantitative agreement between measured quasiparticle energies and calculated KS en-
ergies is often quite poor. For example, (semi-)local exchange-correlation functionals, such as the LDA,
underestimate the HOMO-LUMO gap of molecules by several electron volts. A similar underestimation is
found for the band gaps of semiconductors and insulators. This inability of DFT to yield accurate results for
band gaps in materials is known as the band gap problem of DFT.

To find a route towards overcoming DFT’s problem of predicting accurate quasiparticle properties, let
us first understand what is going wrong. An important piece of the puzzle is the observation that orbital
energies, i.e. the analogue of KS energies, from Hartree-Fock (HF) calculations of molecules are often in
much better agreement with experimental quasiparticle energies than DFT results. For example, ionization
potentials from HF are much closer to experimental values than predictions of semi-local (or even hybrid)
exchange-correlation functionals.

In HF, one solves a similar equation as Eq. 3, but with the important difference that the exchange-
correlation potential of DFT is replaced by the non-local exact exchange (or Fock) potential

vF (r, r′) = −
∑

n
fnv (r, r′)ψn(r)ψ∗

n(r′) (4)

with v (r, r′) = e2/|r − r′| (and e denoting the electron charge). Also, fn denotes the ground state occupancy
of state n (in other words, the exchange potential only involves orbitals that are occupied in the ground
state). The resulting equation is given by[

−h̄2∇2

2m
+ vnuc(r) + vH (r)

]
ψHF (r) +

∫
dr′vF (r, r′)ψHF (r′) = ϵHFψHF (r) (5)

with ϵHF and ψHF (r) denoting the HF single-particle energies and wavefunctions, respectively.
A useful relation between the DFT KS energies and the HF single-particle energies can be obtained by

subtracting Eq. 3 from Eq. 5 and assuming that ψHF (r) ≈ ψKS(r). Multiplying from the left with ψ∗
KS(r) and

integrating over space yields
ϵHF = ϵKS + ⟨ψKS|vF − vxc |ψKS⟩, (6)

where we have used the bra-ket notation for brevity 2. This result looks exactly like what you would get
from first-order perturbation theory with the difference between the Fock exchange potential and the DFT
exchange-correlation potential as the perturbation.

While HF works well for quasiparticle properties of molecules, it fails spectacularly for solids: in partic-
ular, HF band gaps are often larger than experimentally measured ones by several eV. This shows that HF
still lacks an important ingredient needed for predicting accurate quasiparticle properties.

This final ingredient is electronic screening, i.e. the motion of all electrons in the material in response
to electric fields. If a charge is inserted into a material, for example by implanting a charged defect, the
electrons in the material experience the associated Coulomb potential and rearrange in response to it. The

1The only exception is the KS energy of the HOMO which according to Janak’s theorem is equal to minus the ionization potential
in exact DFT, i.e. if the exact exchange-correlation potential was known.

2⟨ψKS |vF − vxc |ψKS⟩ ≡
∫

drdr′ψ∗
KS(r)[vF (r, r′) − vxc(r)δ(r − r′)]ψKS(r′)
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rearrangement of the electrons leads to a change in the electron density δρ(r) which in turns gives rise to
a potential δϕ(r) =

∫
dr′v (r, r′)δρ(r′). The total potential is the sum of the “bare” Coulomb potential of the

defect and the induced potential created by the rearrangement of the electrons and is often significantly
weaker than the “bare” one 3.

Instead of an external charge (such as the one introduced by a defect), we can also consider the charge
carried by each electron in the material. The “bare” potential at position r created by an electron at position
r′ is given by v (r, r′). Again, all other electrons rearrange to screen this potential and therefore the total
potential is given by

W (r, r′) = v (r, r′) +
∫

dr′′v (r, r′′)δρ(r′′). (7)

As it is the total potential (and not the bare potential v (r, r′)) that is experienced by an electron at r, we can
say that electrons in a material interact via a screened interaction W (r, r′) instead of the bare interaction
v (r, r′) which would be relevant for two electrons interacting with each other in vacuum. Importantly, the
screened interaction is often significantly weaker than the bare Coulomb interaction.

The screened interaction is often written in a different form. Linear response theory allows us to express
δρ(r′′) due to the presence of an electron at r′ as

δρ(r′′) =
∫

dr′′′χ(r′′, r′′′)v (r′′′, r′) (8)

with χ(r, r′) denoting the interacting density-density response function. Inserting this into Eq. 9 yields

W (r, r′) = v (r, r′) +
∫

dr′′
∫

dr′′′v (r, r′′)χ(r′′, r′′′)v (r′′′, r′) ≡
∫

dr′′′ϵ−1(r, r′′′)v (r′′′, r′). (9)

Here, ϵ−1(r, r′′′) = δ(r − r′′′) +
∫

dr′′v (r, r′′)χ(r′′, r′′′) denotes the microscopic dielectric matrix which relates
the bare Coulomb potential to the screened interaction 4.

So far, we have considered the response of the electrons in a material to a static time-independent
perturbation. While this might describe well the situation of an implanted charged defect, it is less appro-
priate for electrons which can move around the material. Indeed, it is important to consider the material’s
response to time-dependent perturbations to describe the mutual screening of electrons. In this case, the
density-density response function and the screened interaction will become energy-dependent and will be
denoted by χ(r, r′, E) and W (r, r′, E), respectively.

1.3 GW: a sneak peak

Now that we have a good understanding of the origin of DFT’s (and HF’s) failure to produce accurate
quasiparticle energies, we are ready to take a sneak peak at the GW approach which is the current state-of-
the-art technique for calculating such properties in materials. GW works well for atoms, molecules, clusters
and other nanostructures (such as nanotubes, nanoribbons or two-dimensional materials), surfaces and
bulk materials. For example, GW produces accurate HOMO-LUMO gaps in molecules and also overcomes
the band gap problem of DFT.

In standard GW calculations, quasiparticle energies are obtained by solving an equation that looks
similar to Eq. 6, but the Fock potential is replaced by a so-called self-energy ΣGW (r, r′, E). The resulting
equation is

ϵGW = ϵKS + ⟨ψKS|ΣGW (ϵGW ) − vxc |ψKS⟩. (10)

Like the Fock potential, the GW self-energy is non-local (i.e. depends on two positions), but in addition it
is also energy-dependent. As a consequence, we need to solve for ϵGW self-consistently making sure that
the self-energy is evaluated at the (a priori unknown) quasiparticle energy.

The GW self-energy is often written as a sum of two terms: the screened-exchange (SX) contribution
given by

ΣSX (r, r′, E) = −
∑

n
fnW (r, r′, E − ϵn)ψn(r)ψ∗

n(r′) (11)

3This can be seen by considering the potential of a point charge in a homogeneous dielectric. In this case, the “bare” potential
is reduced by the dielectric constant of the material.

4Setting ϵ−1(r, r′) = δ(r− r′)/ϵ with ϵ being the macroscopic dielectric constant of the material recovers the expected result from
macroscopic electrostatics W (r, r′) = e2/(ϵ|r − r′|).
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and a Coulomb-hole (CH) term. We will present the full expression for the CH term later in this chapter.
For now, we consider the so-called COHSEX approximation to this term as this makes its physical content
more explicit. Within this approximation, the CH contribution to the GW self-energy is given by

ΣCH (r, r′, E) =
1
2
δ(r − r′)

[
W (r, r′, E = 0) − v (r, r′)

]
. (12)

One of the appealing aspects of the GW approach is the transparency of the two self-energy terms.
The SX term has the same form as the Fock potential (see Eq. 4), but with the bare Coulomb interaction
replaced by the screened interaction. This enables GW to produce accurate quasiparticle energies also in
solids where HF fails. In contrast to the SX term, the CH contribution within the COHSEX approximation
is local and static. By inserting Eq. 9 for the screened interaction, we can see that the CH potential is
proportional to the potential associated with δρ(r) which is the change in the electron density induced by
the presence of the electron itself. One can describe this situation as the electron “digging a hole for itself”.

Finally, it is important to note that GW can predict other quasiparticle properties besides their ener-
gies. In particular, it also yields the lifetimes of quasiparticles. Moreover, it can produce other experimental
properties that are not related to quasiparticle properties, such as so-called satellite features in the photoe-
mission spectrum that result from the creation of collective plasmon excitations.

Following this somewhat hand-wavy introduction into the GW approach, we will now proceed and try to
be more rigorous. In particular, we will derive Eq. 10 from first principles, i.e. starting from the fundamental
Hamiltonian of interacting electrons in a material.

2 Introduction to Green’s functions

2.1 Field operators and Green’s functions

Quasiparticles are created when electrons are added or removed from an interacting many-electron sys-
tems as in an (inverse) photoemission experiment or in scanning tunneling microscopy. The mathematical
description of such processes is facilitated by the field operators ψ̂†(r, t) (ψ̂(r, t)) which create (destroy) an
electron at position r and time t . Here, we use the Heisenberg picture which means that operators are
time-dependent and given by

ψ̂(r, t) = eiĤt ψ̂(r)e−iĤt (13)

with Ĥ being the fundamental Hamiltonian of the N-electron system given by

Ĥ = Ĥ0 + Ĥe−e. (14)

Here, Ĥ0 is the Hamiltonian of non-interacting electrons (i.e. the kinetic energy contribution and the contri-
bution arising from the interaction with the atomic nuclei) and Ĥe−e captures electron-electron interactions.

The spatial dependence of the field operator can be described in terms of a complete set of single-
particle orbitals ψn(r) (for example, the eigenstates of non-interacting electrons or alternatively the KS
orbitals) according to

ψ̂†(r) =
∑

n
ψ∗

n(r)ĉ†
n, (15)

where ĉ†
n is the operator that creates an electron in state ψn(r).

To convince ourselves that the field operator really creates an electron at a specific position, we act with
it on the “vacuum” state |vac⟩ which describes the material without any electrons. This yields

ψ̂†(r)|vac⟩ =
∑

n
ψ∗

n(r)|ψn⟩. (16)

To analyze the resulting state as a function of position, we project it onto ⟨r′| (recalling that ψn(r′) ≡ ⟨r′|ψn⟩)
and obtain

⟨r′|ψ̂†(r)|vac⟩ =
∑

n
ψ∗

n(r)⟨r′|ψn⟩ =
∑

n
ψ∗

n(r)ψn(r′) = δ(r − r′), (17)

where we used the completeness of the single-particle basis. This is the expected result as it shows us
that the electron created by the field operator is completely localized at position r.
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Now we are in a position to introduce the Green’s function which describes the propagation of electrons
or holes through a material. For this reason, the Green’s function is often called a propagator. We can
calculate the probability amplitude 5 of a hole (added to the ground state |N, 0⟩ of an N-electron system)
propagating from position r at time t to position r′ at time t ′ as the expectation value

⟨N, 0|ψ̂†(r′, t ′)ψ̂(r, t)|N, 0⟩. (18)

In other words, we first act on the ground state with a field operator to create a hole and then act on this
state with another field operator that creates an electron (i.e. removes the hole) at a later time (implying
that t ′ > t) and at a different location.

Not surprisingly, the propagation of an electron is given by

⟨N, 0|ψ̂(r, t)ψ̂†(r′, t ′)|N, 0⟩, (19)

where we must have that t > t ′.
The Green’s function describes both processes, i.e. the propagation of electrons and holes, and is

given by

G(r, r′, t , t ′) = −i⟨N, 0|
{
Θ(t − t ′)ψ̂(r, t)ψ̂†(r′, t ′) −Θ(t ′ − t)ψ̂†(r′, t ′)ψ̂(r, t)

}
|N, 0⟩ ≡ −i⟨N, 0|T̂

{
ψ̂(r, t)ψ̂†(r′, t ′)

}
|N, 0⟩,

(20)
where Θ(t) denotes the Heaviside step function and we defined the time-ordering operator T̂ which orders
the field operators in the parenthesis according to their time arguments with the field operator that acts at
the earliest time on the very right. When this ordering requires the exchange of two field operators, the
expression must be multiplied with a minus to ensure anti-symmetry of the many-electron wavefunction.

To understand what information about quasiparticle properties is contained in the Green’s function, let
us focus on the part that describes the propagation of a hole and explicitly write out the time-dependence
of the field operators. This yields

−iΘ(t ′ − t)⟨N, 0|ψ̂†(r′, t ′)ψ̂(r, t)|N, 0⟩ = −iΘ(t ′ − t)⟨N, 0|eiĤt ′ψ̂†(r′)e−iĤt ′eiĤt ψ̂(r)e−iĤt |N, 0⟩. (21)

We can simplify this expression by noting that

e−iĤt |N, 0⟩ = e−iEN,0t |N, 0⟩. (22)

As the field operator acting at t removes an electron from the system, we can insert a complete set of
N − 1-electron states (

∑
λ |N − 1,λ⟩⟨N − 1,λ|) directly after it and then use that

eiĤt |N − 1,λ⟩ = eiEN−1,λt |N − 1,λ⟩. (23)

Collecting all terms yields

−iΘ(t ′ − t)
∑
λ

ei(EN,0−EN−1,λ)(t ′−t)⟨N, 0|ψ̂†(r′)|N − 1,λ⟩⟨N − 1,λ|ψ̂(r)|N, 0⟩. (24)

A similar expression can be derived for the electron propagation term, but now we have to insert a
complete set of states of the N + 1-electron system. If we add both contributions together and then carry
out a Fourier transform from time to frequency space, we obtain our final result

G(r, r′,ω) =
∑
λ

ψN−1,λ(r)ψ∗
N−1,λ(r′)

ω − [EN,0 − EN−1,λ] − iη
+
∑
λ

ψN+1,λ(r)ψ∗
N+1,λ(r′)

ω − [EN+1,λ − EN,0] + iη
, (25)

where we introduced the quasiparticle wavefunctions ψN−1,λ(r) = ⟨N − 1,λ|ψ̂(r)|N, 0⟩ and η is a positive
infinitesimal required to ensure the convergence of the Fourier transform of the Heaviside step function.
This is known as the Lehmann representation of the Green’s function. Importantly, it is an exact result and
fully includes the effect of electron-electron interactions. A key insight is that the total energy differences
in the denominators are precisely equal to the quasiparticle energies measured in photoemission and

5Recall that in quantum mechanics the probability of a process is obtained by taking the absolute square of the corresponding
probability amplitude.
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tunnelling experiments. In other words, the quasiparticle energies are the poles of the Green’s function in
frequency space!

Evaluating Eq. 25 for a material is highly challenging because it requires knowledge of the interacting
many-electron wavefunctions (both the ground of the N-electron system as well as all excited states of the
N ± 1- electron systems) and their energies. Not surprisingly, it is much easier to evaluate this expression
when electron-electron interactions are neglected. In this case, |N, 0⟩ and |N ± 1,λ⟩ are single Slater
determinants. In particular, |N, 0⟩ is the Slater determinant obtained from the N spin-orbitals with the lowest
energies, while |N − 1,λ⟩ has an electron missing in one of the spin-orbitals and |N + 1,λ⟩ has an extra
electron in one of the unoccupied orbitals. As the total energies of these many-electron states is simply
the sum of the orbital energies ϵn of all occupied single-electron states ψn(r), the quasiparticle energies are
simply given by the orbital energies and the quasiparticle wavefunctions by the orbital wavefunctions. The
final result is

G0(r, r′,ω) =
∑

n
fn
ψn(r)ψ∗

n(r′)
ω − ϵn − iη

+
∑

n
(1 − fn)

ψn(r)ψ∗
n(r′)

ω − ϵn + iη
. (26)

This equation shows that Go is diagonal in the basis of single-particle states ψn(r), i.e.

G0,nn′(ω) ≡ ⟨ψn|G0|ψn′⟩ =
δnn′

ω − ϵn ± iη
, (27)

with the sign depending on whether n is an occupied or an unoccupied state.

2.2 Evaluating the interacting Green’s function through Feynman diagrams

So far, we have derived an exact expression, the Lehmann represenation, for the interacting Green’s func-
tion, but evaluating this expression is extremely challenging because it requires knowledge of all many-
electron eigenstates (and energies) of the N ±1 electron systems as well the interacting N electron ground
state. However, calculating the non-interacting Green’s function is straightforward and we can use this
result as the starting point for a perturbation series expension of the interacting Green’s function.

Starting from Eq. 14, we treat the Ĥe−e as a perturbation and expand the exponential factors that enter
the Green’s function through the time-dependence of the field operators, such as exp(−iĤt), as

exp(−iĤt) ≈ e−iĤ0t

(
1 − iĤe−et +

(−iĤe−et)2

2
+ ...

)
. (28)

In addition, we need to expand the interacting N-electron ground state. This can be achieved through the
use of the Gell-Mann-Low theorem which states that

|N, 0⟩ = exp(−i
∫ 0

−∞
dtĤη(t))|N, 0⟩0, (29)

where we introduced the time-dependent Hamiltonian Ĥη(t) = Ĥ0 + e−η|t |Ĥe−e which is equal to the non-
interacting Hamiltonian at t = ±∞ and equal to the fully interacting Hamiltonian at t = 0. Here, η is a
positive infinitesimal which ensures that the interactions are “switched on” extremely slowly. Finally, |N, 0⟩0
is the ground-state wavefunction of the non-interacting electrons.

Inserting Eq. 29 into the interacting Green’s funtion and expanding Ĥη in terms of the electron-electron
interaction then allows us to express G as a series of terms which contain different numbers of Ĥe−e’s. In
principle, each term is straightforward to evaluate, but the problem is that so many terms are generated
such that the book-keeping becomes a problem.

To deal with this challenge, Richard Feynman came up with a diagrammatic representation of the
terms. The building blocks of the diagrams are non-interacting Green’s functions G0(r, r′, t , t ′) which are
represented by straight lines that connect two space-time points (r, t) and (r′, t ′) and Coulomb interactions
v (r, r′, t , t ′) = v (r, r′)δ(t − t ′) 6 which are represented by “wiggly” lines, see Fig. 1.

Then the interacting Green’s function, which is represented by a double straight line can be represented
by the set of diagrams shown in Fig. 1.

6Here, we assume that Coulomb interactions act instantaneously and neglect any retardation effects arising from the finite
speed of light.
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Figure 1: Top: Graphical representations of the interaction and the non-interacting Green’s function and
the bare Coulomb interaction. Bottom: Lowest-order diagrams for the interacting Green’s function.
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To evaluate a diagram we label each space-time point where straight lines and wiggly lines meet by
a space-time point (rj , tj ) and then write down the product of all Coulomb interactions and non-interacting
Green’s functions that connect the various space-time points. Finally, we integrate over all space-time
points except the initial and final one and multiply by a factor of (−1)F with F denotes the number of closed
loops made by straight G0 lines.

As an example, let us evaluate the two first-order terms which contain a single wiggly interaction line.
The contribution of the first term is given by∫

d3r1

∫
dt1

∫
d3r2

∫
dt2G0(r′, t ′; r2, t2)v (r2, t2; r1, t1)G0(r2, t2; r1, t1)G0(r1, t1; r, t) (30)

and the contribution of the second term is

(−1)
∫

d3r1

∫
dt1

∫
d3r2

∫
dt2G0(r′, t ′; r1, t1)v (r1, t1; r2, t2)G0(r2, t2; r2, t2)G0(r1, t1; r, t). (31)

Here, we multipled the second term by a factor of −1 because it contains a closed loop. We will later see
that the first term describes the Fock exchange while the second one captures Hartree interactions.

2.3 Structure of the diagrammatic series

In principle, we can now start and evaluate term by term of the diagrammatic series and thereby calculate
the interacting Green’s function with increasing accuracy. Unfortunately, this approach will not yield accu-
rate results for real materials because the Coulomb interaction between electrons is very strong. However,
we can exploit the structure of the diagrammatic series to capture the contribution of a subset of terms in
all orders of the perturbation expansion.

The first step is to realize that all diagrams (except the zero-th order one which is just a single straight
line) start with a straight line and end with a straight line and have “something” in the middle. We can
therefore write these diagrams in terms of a shaded bubble which contains the sum of all the stuff that is in
the middle between in initial and the final straight lines, see Fig. 2. The diagrams in the shaded bubble are
simply the standard Feynman diagrams with the initial and final straight lines “sawn off”.

But there is more: when we inspect the diagrams inside the shaded bubble, we see that they fall into
two distinct classes. There are some terms that can be separated into two unconnected pieces by “cutting”
a single straight line. Examples include the third and the fourth diagrams. The other diagrams that are
drawn do not fall into this category and we call them irreducible. The sum of these irreducible diagrams
is called the (irreducible) self-energy and is diagrammatically represented by a non-shaded bubble. The
shaded bubble can now be expressed as a series of self-energy bubbles, see Fig. 2.

We can insert this result back into the diagrammatic series for the interacting Green’s function and
obtain the lowest panel of Fig. 2. All terms (except the first one) in this expansion have a similar structure:
they start with a straight line, then comes a self-energy bubble and then the “rest”. This observation allows
us to factor out the common part and write the series as shown in the second line of Fig. 2. Intriguingly, the
term in parenthesis is equal to the interacting Green’s function and we obtain the final result given by the
last line of Fig. 2. This is the famous Dyson equation for the interacting Green’s function.

We can again use the Feynman rules to translate this diagram into an mathematical expression accord-
ing to

G(r, t ; r′, t ′) = G0(r, t ; r′, t ′) +
∫

d3r1

∫
dt1

∫
d3r2

∫
dt2G0(r, t ; r1, t1)Σ(r1, t1; r2, t2)G(r2, t2; r′, t ′), (32)

where we represented the self-energy diagram by the mathematical symbol Σ(r1, t1; r2, t2). Note that the
Dyson equation is exact despite its derivation from a perturbation expansion.

We can further simplify this equation by Fourier transforming from time to frequency and expressing G,
G0 and Σ in a basis of single-particle orbitals. In this basis, G0 is diagonal, see Eq. 27. In many materials,
it is a very good approximation to assume that also Σ is diagonal in this basis. As a consequence, G will
also be diagonal and its diagonal components are given by

⟨ψn|G(ω)|ψn⟩ =
1

ω − ϵn − ⟨ψn|Σ(ω)|ψn⟩
. (33)
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Figure 2: The diagrammatic structure of the interacting Green’s function.
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Figure 3: a) Lowest order contributions to the self energy. b) Screening the bare interaction of the Fock dia-
gram. c) xpressing the self energy as a (unscreened) Hartree diagram and a screened exchange diagram.

According to the Lehmann representation, the quasiparticle energies ϵQP are given by the poles of the
interacting Green’s function. These are the frequencies at which the denominator on the right hand side
becomes zero, i.e.

0 = ϵQP
n − ϵn − ⟨ψn|Σ(ϵQP

n )|ψn⟩. (34)

This can be rearranged into
ϵQP
n = ϵn + ⟨ψn|Σ(ϵQP

n )|ψn⟩. (35)

Instead of using the non-interacting Hamiltonian as the starting point for the series expansion, one
usually achieves much higher accuracy by using a mean-field Hamiltonian which captures parts of the
electron-electron interactions instead. One particularly convenient choice is the Kohn-Sham Hamiltonian.
To avoid double counting, one must, however, remove the contributions from electron-electron interactions
to ϵKS

n resulting in
ϵQP
n = ϵKS

n − ⟨ψn|vH + vxc |ψn⟩ + ⟨ψn|Σ(ϵQP
n )|ψn⟩. (36)

2.4 Approximate self-energies

We still cannot predict quasiparticle energies in real materials because we do not yet know how to calcu-
late the self-energy which captures the effect of electron-electron interactions. The most straightforward
approach is to simply evaluate the lowest order contributions to the self-energy given by the diagrams
shown in Fig. 3.

Let us take a closer look at these two contributions to the self-energy. Evaluating the first one yields

ΣF (r, t ; r′, t ′) = G0(r, t ; r′, t ′)v (r, t ; r′, t ′). (37)

Inserting the explicit form of G0 and then Fourier transforming to frequency space produces

ΣF (r; r′,ω) = v (r; r′)
∑

n
fnψn(r)ψ∗

n(r′), (38)

which is just the Fock potential.
Going through the same steps for the second term yields

ΣH (r; r′,ω) = δ(r − r′)
∫

d3r1v (r, r1)
∑

n
fnψn(r)ψ∗

n(r), (39)
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which is just the Hartree potential.
In other words, evaluating only the two lowest-order contributions to the self-energy gives rise to a non-

self-consistent Hartree-Fock theory 7. This is clearly not a very useful theory for describing real materials
which indicates that more diagrams must be included in the evaluation of the self-energy.

A much better theory is obtained when one includes all higher-order diagrams which are similar to the
Fock diagram but include additional closed loops according to Fig. 3. It is often said that the photon (which
mediates the Coulomb interaction) is annihilated creating an electron-hole pair which in turn is annihilated
creating a photon. Summing up all these processes allows us to define an effective or screened interaction
W which is indicated by a double-wiggly line.

Again, there is a nice structure in the equation for the screened interaction which is reminiscent of the
Dyson equation for the interacting Green’s function. In particular, all diagrams (except the lowest-order
one) begin with a wiggly line and a loop which can be factored out. Finally, one notices that the series in
the parenthesis is nothing but the screened interaction again.

Translating this diagrammatic equation into a analytical form and Fourier transforming to frequency
space gives

W (r, r′,ω) = v (r, r′) +
∫

d3r1

∫
d3r2v (r, r′1)χ0(r1, r2,ω)W (r2, r′,ω), (40)

where we represented the closed loop by the mathematical symbol χ0.
Solving this equation for W yields

W (r, r′,ω) =
∫

d3r1ϵ
−1(r, r1;ω)v (r1, r′), (41)

where we introduced the dielectric matrix

ϵ(r, r′,ω) = δ(r − r′) −
∫

d3r1v (r, r1)χ0(r1, r′;ω). (42)

By comparing this equation to Eq. 9 we find that χ0 can be interpreted as the non-interacting density-density
response function (recall that we used the symbol χ to denote the interacting density-density response
function).

By adding the screened Fock diagram to the Hartree diagram we arrive at the G0W approximation to
the self-energy, see Fig. 3. Translating this into an analytical expression yields

ΣG0W (r, t ; r′, t ′) = ΣH (r, t ; r′, t ′) + iG0(r, t ; r′, t ′)W (r, t ; r′, t ′). (43)

The final trick to is to realize that one can capture even more diagrams when the non-interacting Green’s
function in the screened Fock diagram is replaced by the interacting one. This is the full GW self-energy. In
practice, however, the full interacting Green’s function is usually replaced by a mean-field Green’s function;
i.e. a Green’s function which has the same form as the non-interacting one but with orbitals and energies
from a mean-field approach, such as KS DFT or Hartree-Fock.

To evaluate the G0W diagram, we first Fourier transform to frequency space which produces

ΣG0W (r, r′;ω) = i
∫ dω′

2π
G0(r, r′;ω − ω′)W (r, r′;ω′)e−iηω′

. (44)

The frequency integral can be carried out using the method of residues: one obtains contributions from
the poles of G0 and contributions from the poles of W . This yields

ΣG0W (r, r′;ω) = −
∑

n
fnψn(r)ψ∗

n(r′)W (r, r′;ω − ϵn) −
∑

n
ψn(r)ψ∗

n(r′)
∫ ∞

0

dω′

2π
ImW (r, r′;ω′)
ω − ω′ − ϵn + iη

, (45)

where we used the spectral representation of the screened interaction.
In principle, it is straightforward to evaluate this expression (apart from numerical difficulties which will

be discussed in the next section). Sometimes, however, additional approximations are made in the second
term. In particular, if one assumes that ω − ϵn = 0, one can use the Kramers-Kronig relation to find∫ ∞

0

dω′

2π
ImW (r, r′;ω′)

−ω′ + iη
= −1

2
[
ReW (r, r′,ω = 0) − v (r, r′)

]
. (46)

7It is not self-consistent because the orbitals are not the solutions of the Hartree-Fock equation, but the non-interacting ones.
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Then the sum over n can be carried out using
∑

n ψn(r)ψ∗
n(r′) = δ(r − r′) and one arrives at Eq. 12.

A less drastic approximation is assume that the imaginary part of W (ω′) in Eq. 45 is proportional to a
delta-function which is then used to carry out the integral over frequency analytically. This is known as the
plasmon-pole approximation and has been widely used in practical GW calculation for materials.

2.5 Practical GW calculations

There are a number of different GW codes which implement different strategies for evaluating quasiparticle
properties. Here, I will give a short overview of the steps involved in a “standard” GW calculations, for
example using the BerkeleyGW code.

First, one starts with a DFT (or other type of mean-field) calculation to determine the mean-field energies
and orbitals. In a GW calculation both the occupied KS states as well as the unoccupied ones are needed
for the evaluation of the non-interacting density-density response function and also for the Coulomb-hole
part of the self-energy. Of course, it is not possible in a numerical calculation to calculate all unoccupied
states so the challenge is to calculate enough of them to obtain converged quasiparticle properties.

The next step is to determine screened interaction which requires the inverse dielectric function. For
this, one first constructs the non-interacting density-density response function. Typically, χ0 is not con-
structed in real space, but in some basis. For example, BerkeleyGW uses a plane-wave basis. Next, the
dielectric matrix is constructed and then inverted. Construction of the dielectric matrix involves the Coulomb
interaction, which is very long-ranged. This gives rise to a slow converges with respect to supercell size
when periodic boundary conditions are used. To remedy this, truncated Coulomb interactions are often
used. Once the inverse dielectric matrix is obtained, it can be used to construct the screened interaction.

Finally, one can determine the self-energy and its matrix elements which allows the determination of
quasiparticle properties, such as their energies.
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