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Kohn and Sham rewrote the Hohenberg–Kohn 
total energy functional as

Quick recap

Where Ts is the kinetic energy of the particles in the non-
interacting Kohn–Sham system. Exc is then defined by this 

equation (thus transferring what we don’t know from FHK to Exc



Taking the functional derivative of the KS expression with respect 
to the density or the orbitals leads to the Kohn–Sham equations

Where the Kohn–Sham potential is given as:

Quick recap



Clarification: Non-interacting particles but interacting density

Quick recap

Rather than feel the effect of the other electrons in a direct, particle-
by-particle way, Kohn–Sham particles feel the presence of each other 

through their effect on the Kohn–Sham potential



Put another way

Density functional theory (DFT) replaces the many-body N-dimensional electronic 
wavefunction with the 3-dimensional electron density
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Finding the solutions of the KS is a chicken and egg problem

Solving the KS equations

The KS potential VKS depends on the density ρ. So, if we find the ρ that 
minimises the energy for a particular VKS, VKS will change as a result.

Goal: We seek a self-consistent value of ρ, such that the
 energy is minimised and VKS remains unchanged



Self consistent field cycle
Guess the density ρin

Set up Hamiltonian H(ρin)

Refine density ρin, ρout → new ρin

New charge density ρout

Test: ΔE < Ebreak

Stop

no

Diagonalise H to get new ψn and εn
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Large charge redistributions occur from one iteration to the next

Picking the next density

Simply doing:

will typically not converge if iterated



The most obvious strategy is to damp the change by keeping some 
of the first input density in constructing the new output density 

Density mixing

Example of direct mixing for a 2x2x2 supercell of pristine MgO



However, this is not guaranteed to converge and doesn’t work for 
more complex examples due to charge sloshing instabilities

Density mixing

Example of direct mixing for a 2×2×2 supercell of MgO containing an oxygen vacancy



More complex mixing algorithms keep a record of all densities 
calculated and mix many densities together

Broyden and Pulay mixing are the most common

Density mixing – advanced

Mixing algorithms for a 2×2×2 supercell of MgO containing an oxygen vacancy 
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Direct diagonalization works well for small problems but with plane 
waves the matrix can be huge and computationally intractable

Diagonalisation schemes

Iterative methods (e.g. Blocked-Davidson) only require knowledge of how the 
Hamiltonian acts on a particular vector. Iteratively applying an operator 

allows one to extract the lowest-lying eigenstates (default in VASP)

Alternative methods include the “residual-minimization method with direct 
inversion in the iterative subspace (RMM-DIIS)”



Smearing – metals
If a band lies near to the Fermi level, it can be fully occupied in one 

iteration and fully deoccupied in the next, leading to instabilities

This is always going to happen for metals
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Smearing – metals

A “temperature” is used to define the distribution – not a physical 
temperature but a convergence parameter where we want the T→0 limit

A solution is to allow partial occupancy of bands near the Fermi level



A solution is to allow partial occupancy of bands near the Fermi level

Smearing – metals

A “temperature” is used to define the distribution – not a physical 
temperature but a convergence parameter where we want the T→0 limit

Fermi Dirac Methfessel–Paxton (N=3)



For insulators, the bands should never be partially occupied but an 
incorrect smearing can sometimes cause this

Smearing – insulators

The red colour indicates partial occupancy of the bands. The width of the 
smearing is too high and can give rise to incorrect energies and forces.



For insulators, the bands should never be partially occupied but an 
incorrect smearing can sometimes cause this

Smearing – insulators

One solution is to set a very small broadening width in semiconductors 
(e.g., SIGMA = 0.02) for VASP



For insulators, the bands should never be partially occupied but an 
incorrect smearing can sometimes cause this

Smearing – insulators

The best option is to use tetrahedron integration with Blöchl corrections 
instead (e.g., ISMEAR = -5 in VASP). However, you need at least 4 k-points



The choice of smearing can have a large impact on integrated 
properties, e.g. the density of states or response functions

Impact of smearing functions

“How to analyse a density of states”, Materials Today Electronics 1, 100002 (2022)



You should always test the k-point sampling for your system. The 
sampling ratios depend on the reciprocal lattice dimensions

K-point convergence

Different properties can converge differently with k-point sampling. For 
example, total energies will converge much faster than Raman intensitites

Length cutoff  KSPACING    Samples
-------------  --------  ------------
       5.588    0.5622     2   2   2
       8.382    0.3748     3   3   3
      11.176    0.2811     4   4   4
      13.970    0.2249     5   5   5
      16.764    0.1874     6   6   6



You should always test the k-point sampling for your system. The 
sampling ratios depend on the reciprocal lattice dimensions

K-point convergence

For anisotropic systems, selecting the k-point meshes to test is non-trival
Recommended to use: https://github.com/WMD-group/kgrid

Length cutoff  KSPACING    Samples
-------------  --------  ------------
       6.277    0.5005     3   4   2
       7.488    0.4196     3   5   2
       7.559    0.4156     4   5   2
       7.846    0.4004     4   5   3
       9.416    0.3337     4   6   3



Where does the total energy converge?
K-point convergence

Note: metals typically require much denser meshes to converge
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Basis sets are used to represent the electronic wavefunctions

Basis set choices

Plane waves
✓Good for periodic systems
✓Straight-forward to converge
✓Straight-forward to converge
✓No geometry dependence
✓Mathematically simple
✗Not good for sharp features
✗Required even in empty space
✗Need many PWs to converge

Atom centred
✓Good for core states
✓Correspond to atomic orbitals
✓Relatively few functions needed
✓Better scaling for large systems
✗Not orthogonal
✗Basis set superposition errors
✗Linear dependencies
Different types: Gaussian, Slater

Other types include real-space grids, mixed basis sets and augmented methods
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Plane wave cutoff convergence
You should always test the plane wave cutoff for your system. This 

only needs to be done once per composition-structure combo

Different properties can converge at different cutoff. For example, total 
energies will often converge faster than the stress



Spin State

Singlet
S=0

Triplet
S=2

Quintet
S=4

Doublet
S=1

Quartet
S=3

Sextuplet
S=5

Even electron
number

Odd electron
number



If your system is spin-polarized you should carefully consider 
the spin states before running any calculations

A DFT code will normally guess that systems with an even 
number of electrons are singlets and that systems with odd 

numbers of electrons are doublets

Notes on spin

Although there are methods that will optimize the spin states, they are not 
very good and normally get stuck on the initial guess. You will normally need 

to try higher spin states by hand if you think they might be lower in energy



Both atomic and molecular oxygen have a triplet ground state

Example – oxygen



Example INCAR tags needed to set the triplet spin state of O2

Example with VASP – oxygen

Other DFT codes such as CASTEP will have similar settings

ISPIN   = 2    ! Enable spin polarisation
MAGMOM  = 1 1  ! Initial magnetic moment on each ion
NUPDOWN = 2    ! Enforce spin multiplet



In ferromagnetic materials, all the spins point the same way. E.g., 
CrO2 where Cr is d2 and there are 2 Cr atoms in the unit cell

Example – ferromagnets

ISPIN   = 2
MAGMOM  = 2 2 6*0 
NUPDOWN = 4



Alternatively, if the system is antiferromagnetic, the spins point in 
opposite directions and the total magnetisation is cancelled

Example –  antiferromagnets

ISPIN   = 2
MAGMOM  = 2 -2 6*0
NUPDOWN = 0
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We can either calculate energies given the input atomic positions 
or we can geometry optimise to find the low energy structure

Geometry optimisation

For a NaCl dimer, the only structural parameter is the separation



Geometry optimisation finds local minima not the global minimum

Beware



Local minima can represent allotropes that are stable. Relaxing 
these structures would not find the global minimum (graphite)

Local minima are still important

A. R. Oganov et al. Reviews in Mineralogy and Geochemistry  75, 1, (2013)



Problem is to find the set of atomic positions R = {r1, r2, …, rN} 
and lattice vectors a = {a1, a2, a3} that define the minimum 

(stationary point) on the potential-energy surface

Geometry optimisation – theory

Approach: Adjust an initial R and a to minimize E0, Fi and/or σij 
via an optimisation algorithm



Performing an optimisation involves using an algorithm to locate a 
minimum on a multidimensional potential energy surface (PES)

Optimisation and symmetry



Crystal symmetry can significantly reduce the number of 
degrees of freedom

Optimisation and symmetry

NaCl

Atoms fixed at                and

a = b = c and α = β = γ = 90°

One DoF: the lattice constant α 



Crystal symmetry can significantly reduce the number of 
degrees of freedom

Optimisation and symmetry

Wurtzite ZnS

Atoms in the a/b plane fixed

                   and α = β = 90° and γ = 120°

Three DoFs: a, c and u 



Follow the forces/stresses to the nearest minimum

Gradient descent

Pros and cons: Slow “zig-zag” convergence to the minimum; 
requires many iterations



Newton–Raphson
Follow the forces/stresses to the nearest minimum

Pros and cons: Fast convergence but requires a cheap 
(approximate) inverse Hessian



Conjugate gradient
Follow the forces/stresses to the nearest minimum

Pros and cons: A good middle ground between steepest 
descent and Newton-Raphson for convergence speed and cost



The implementation of optimisation methods is not consistent 
across DFT packages – other approaches include

Other optimisation algorithms exist

Performance will depend on your application and it is worth testing if 
you can speed a calculation up by changing algorithm

• BFGS: Robust and fast for most problems

• L-BFGS: Low memory version that can be useful for large systems

• FIRE: More modern method, worth trying for difficult cases



Choosing the optimisation method – VASP

Image from: https://www.vasp.at/wiki/index.php/VASP_workshop



There is a lot of flexibility in what to optimise in a calculation

Types of geometry optimisation

Different DFT codes treat geometry and cell optimisation differently –
some will treat them as different types of calculations (CP2K) and 

others as the same type (Castep, VASP)

• Geometry optimisation: Minimise the total energy by moving the 
atoms and minimising forces

• Cell optimisation: Minimise the stress tensor by modifying the cell 
vectors (lengths and angles)

• Both: Attempt both kinds of optimisation at the same time



The ISIF tag sets the details of what to optimise

Example optimisation – VASP

ISIF Positions Cell shape Cell volume
2 ✓ ✗ ✗

3 ✓ ✓ ✓

4 ✓ ✓ ✗

5 ✗ ✓ ✗

6 ✗ ✓ ✓

7 ✗ ✗ ✓



The plane wave basis depends on the reciprocal lattice 
vectors and hence the cell shape and volume

During a variable cell optimisation, the basis set can become 
incomplete and lead to artificial (Pulay) forces

Pulay stress

To mitigate: Increase plane wave cutoff to 1.3–2 times the converged value



An alternative way to obtain the equilibrium volume is to calculate 
an energy–volume curve

1. Perform a series of constant-volume relaxation
2. Locate the minimum by fitting to an equation of state such as Birch-

Murnaghan – this gives equilibrium volume V0, energy E0, and bulk 
modulus B0

Energy/volume curves



Comparison of wurtzite (w) vs zinc blende (c) ZnO

Example

Reproduced from: https://github.com/skelton-group/VASP-Workshop-Chester-2019



Troubleshooting

Reproduced from: https://github.com/skelton-group/VASP-Workshop-Chester-2019

Problem
My optimisation is taking a long time to converge

Things to check
• Are your electronic SCF steps converging properly? One failed SCF can undo 

several optimisation steps
• Is your force convergence criteria reasonable – large low-symmetry structures 

are hard to converge to high tolerances

Things to try
• Change your optimisation algorithm
• Change the step size if the PES is very shallow (e.g. POTIM in VASP)



Troubleshooting

Reproduced from: https://github.com/skelton-group/VASP-Workshop-Chester-2019

Problem
My optimisation is diverging

Things to check
• Are your electronic SCF steps converging?
• Is your input structure reasonable? Experimental structures are definitely not 

infallible. Check for badly placed H atoms, partial occupancies and dodgy CIFs
• Is your POTCAR ordered correctly?
• If using spin polarisation, are your settings correct?

Things to try
• Change your optimisation algorithm
• Change the step size if the PES is very shallow (e.g. POTIM in VASP)



Troubleshooting

Reproduced from: https://github.com/skelton-group/VASP-Workshop-Chester-2019

Problem
My optimised structure doesn’t match experiment/previous calculations

Things to check
• If comparing to experiment: i) is the experimental structure good quality? ii) 

Have you considered thermal expansion? iii) Ideally you want single-crystal X-
ray or neutron data recorded close to 0 K.

• If comparing to calculations: i) Are you using a comparable setup (XC function, 
cutoff, k-point sampling, …). ii) Are your chosen parameters more appropriate 
than those used in previous work? 

Things to try
• Different XC functions – PBEsol or PBE-D3 instead of PBE.



Not all stationary points are equal
Problem is to find the set of atomic positions R = {r1, r2, …, rN} 

and lattice vectors a = {a1, a2, a3} that define the minimum 
(stationary point) on the potential-energy surface



Not all stationary points are equal
Computing the force constants and obtaining the harmonic 

phonon frequences from the dynamic matrix allows us to 
confirm we have located a minimum



A range of excellent databases of crystal structures exist

Comparing with experiment



Go to https://psds.ac.uk and login with your university credentials

Practical – using the ICSD
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Jacob’s ladder of DFT functionals

J. P. Perdew et al. “Some fundamental issues in ground-state density functional theory: A 
guide for the perplexed”, J. Chem. Theory Comput. 5 4 (2009)

The Jacob’s ladder of density functional 
approximations to the exchange-correlation 
energy adds local ingredients successively, 
leading up in five steps from the Hartree 
world (Exc = 0) of weak or no chemical 
bonding to the heaven of chemical accuracy



XC energy is locally approximated with the value of a homogeneous 
electron gas of the same density. Computationally the cheapest

Local density approximation (LDA)

Only run of the ladder that doesn’t include any empirical parameters



A family of functionals including PBE, PBEsol, PW91, BLYP
Generalised gradient approximation (GGA)

• Negligible computational cost increase on LDA but greater range 
of available parameters

• PBE is considered one of the best general purpose GGA 

• Other GGAs might be better for a specific purpose but tend to be 
weaker in other areas (PBEsol best for solids) 

• At the limit of improving GGA performance (PBE is from 1996)



Include a dependence on the kinetic energy density of electrons

Meta-GGAs

• In meta-GGAs the XC potential becomes orbital dependent

• Small computational cost increase on GGA. Making meta-GGAs 
better than GGAs is very hard. They are often less transferable

• Earlier attempts like the TPSS functional (2003) have not been 
used much in practice

• Newer GGAs like r2SCAN (2020) seem more promising



More accurate treatment of electronic correlation needed for band 
gaps, atomization energies, reaction barriers, VDW interactions

The need to go beyond DFT and Hartree–Fock



XC functionals that mix some Fock exchange with semi-local DFT

Hybrid functionals

• Using non-local exchange is extremely computationally expensive. 
Guaranteed to be most expensive part of resulting DFT calculation

• Importance choice is how much non-local exchange to use

• Functionals also differ in how they treat long range exchange

• Started out as empirical method by now well justified through the 
adiabatic connection theorem (see 10.1103/RevModPhys.80.3)



Empirical functional fitted to reproduce atomization energies, 
ionization potentials, proton affinities, and atomic energies

B3LYP

• B3LYP is more reliable for lighter elements as this is what it was 
fitted to (atoms and simple molecules)

• The most popular hybrid functional for organic molecules

• Arbitrary mix of GGA/LDA – not common in most hybrid functionals



The PBE0 functional uses ¼ exact exchange – justified 
according to MP4 theory

PBE0

• Significantly more costly to apply to solids than B3LYP is to 
molecules as it is hard to converge with respect to k-points (B3LYP 
would have same issues if it were used with solids)

• A popular hybrid functional in Physics



Designed to be better behaved with k-point sampling – Long range 
exchange is turned off using the parameter ω

HSE06

• The standard value of ω=0.2 is used (reduces to PBE0 for ω=0)

• Screening exchange in this manner reduces the computational 
cost significantly

• Although motivated by computational considerations, HSE06 
outperforms PBE0 for small and medium gap semiconductors



Performance for solids
Hybrids significantly improve on GGA but still aren’t perfect

Marsman et al. J. Phys.: Condens. Matter  20 064201 (2008)



Performance for solids



Hybrid exchange
The amount of exchange needed to describe a material is related to 

the dielectric screening (itself a material-specific property)

J. H. Skone et al. Phys. Rev. B 89, 19 (2014); D. Fritsch et al. Nano. Res. Lett. 12, 19 (2017)



Failures of XC functionals

• You can’t mix and match XC functionals systematically, so hard to 
describe systems where different functionals are appropriate, e.g., 
molecule on metal, metal/semiconductor interface

• Very poor description of long-range interactions, such as van der 
Waals (need empirical corrections such as D3)

• Better at molecular binding energies (does chemical reaction 
happen) vs barriers (how fast does chemical reaction happen)

• Routes to XC functional improvement seem to require calculations 
to be very expensive (see double hybrid functionals)



Failures of hybrid functionals

Care needs to be taken with transition metals – the set values of 
exchange are not always correct

D. O. Scanlon and G. W. Watson  Phys. Chem. Chem. Phys. 13, 9667 (2011)



Beyond DFT
GW theory and its many flavours can correct many issues with 

hybrid functionals – but expect a high computational price

Forces are not readily available from GW calculations – instead use RPA 



Conclusions

1. Density mixing is an important part of SCF calculations

2. Geometry optimisation can find local minima in the energy 
landscape, which may or may not be the global minimum

3. Local functionals are cheap and good for many properties. 
Difficult to find better general-purpose functionals than PBE

4. Hybrid functionals require significant computational resources 
but offer improved band gaps
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