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Crystal Structure: Unit Cell (Recall)

=> The shape and translation of a unit cell are determined by its

unit vectors…

o 2D: (a,b)

o 3D: (a,b,c) (e.g., out of the plane below)

=> Translation vector: R=naa+nbb+ncc (integers: na, na, nc)

Notation: Bold font used for vectors
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Crystal Hamiltonian & Electron Density

=> Density Functional Theory (Kohn-Sham) approach…

𝜀,𝜓, =
𝐻𝜓, 𝐻 = −

1

2
∇

+ 𝑉(𝒓)

Hamiltonianeigenenergy Kinetic energy

potentialband index, wave number

e-e, eXchange-Correlation

𝑉 𝒓 = 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓

nuclei e-e, electrostatic (Hartree)

𝑉 𝒓 + 𝑹 = 𝑉 𝒓

Crystal Periodicity:

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗

𝜌 𝒓 + 𝑹 = 𝜌 𝒓

Averaging over

k-points



Crystal Hamiltonian & Electron Density
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=> Interdependence…

𝜀,𝜓, =
𝐻𝜓,

𝑉 𝒓 = 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓

𝐻 = −
1

2
∇

+ 𝑉(𝒓)

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗

…self-consistent loop, more in a later lecture….

𝜌(𝒓) → 𝑉 𝒓

𝜌(𝒓) → 𝑉 𝒓



K-points & Electron Density

5

=> Why average over k-points… delocalization….

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗

𝑥

𝛹, 𝑥 = 𝑒
𝒌𝒙

𝑢, 𝑥

𝑒
𝒌𝒙

𝐿

atom

one unit cell

1D example
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𝑥

𝛹, 𝑥 = 𝑒
𝒌𝒙

𝑢, 𝑥

𝑒
𝒌𝒙

𝐿

atom

one unit cell

1D example

K-points & Electron Density

=> Why average over k-points… delocalization….

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗
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K-point Sampling & Electron Density

=> k-points sampling methods….

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗

The simplest (and most

common) choice is to

uniformly sample the

Brillouin zone.

Technical term:

o “Mohnhorst-Pack” sampling

𝒌

𝒌

𝒌

𝒌

𝒌

𝒌

𝒌
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K-point Sampling & Electron Density

=> Rough “unit cell” k-points sampling trends…

no unit cell periodicity
1

… more k-points gives a higher accuracy electron density description.

less k-points

more k-points

band gap between filled

and occupied states

Fermi surface sampling

requires more k-points

≥

≥

No crystalline periodicity



K-point Sampling & Total Energy

higher accuracy

# k-points in each direction (e.g., kx, ky, kz)
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=> Ex: Diamond lattice k-point sampling trends…



Total Energy Dependence on Electron Density

=> Electron-electron (e-e), ion-ion, and electron-ion interactions…

𝐸 = 



𝜌 𝒓 𝑉 𝒓 𝑑𝒓 + 𝑇 + 𝐸 + 𝐸 + 𝐸

e-e, eXchange-Correlation

e-e, electrostaticelectron density

ion potential wells

electron kinetic energy ion-ion

interaction

(repulsion)

++
repulsion

repulsion

attraction

Example: H2

unit cell volume

e
_

e
_



Total Energy To Binding Properties

++

𝑅

repulsion

attraction

=> Similar diatomic interaction form for all atoms…

𝐸 = 



𝜌 𝒓 𝑉 𝒓 𝑑𝒓 + 𝑇 + 𝐸 + 𝐸 + 𝐸

… or uniform lattice compression/extension….

Bonding

distance

𝐸



Crystal Structure: Unit Cell (Recall)

=> The shape and translation of a unit cell are determined by its

unit vectors…

o 2D: (a,b)

o 3D: (a,b,c) (e.g., out of the plane below)

=> Translation vector: R=naa+nbb+ncc (integers: na, na, nc)

Notation: Bold font used for vectors
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Electron Density Repetition & Crystals

=> When the electron density and nuclear positions are periodic…

𝜌(𝒓) =
1

𝑁









𝜓, 𝜓,
∗

𝜌 𝒓 + 𝑹 = 𝜌(𝒓)

𝜓, 𝒓 = 𝑒
𝒌𝒓

𝑢, 𝒓

𝑢, 𝒓 + 𝑹 = 𝑢, 𝒓

Imposes k-point sampling requirement

Lattice periodic component…

𝜀,𝜓, = 𝐻𝜓,

𝑉 𝒓 = 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓

𝐻 = −
1

2
∇

+ 𝑉(𝒓)

𝑉 𝒓 + 𝑹 = 𝑉 𝒓

Nuclei (“ions”)



Periodicity in the Bloch Wave

𝑢, 𝒓 + 𝑹 = 𝑢, 𝒓

𝒓 = 𝒙 + 𝒚 + 𝒛
𝒙

Unit cell

𝒙



Periodicity in the Crystal Potential

𝑉 𝒓 + 𝑹 = 𝑉 𝒓

𝒓 = 𝒙 + 𝒚 + 𝒛
𝒙

𝒙

Unit cell



Fourier Series Expansion of Bloch Wave

𝑢 𝒓 + 𝑹 = 𝑢 𝒓

⋯⋯

⋯

⋯

2𝐺 =
4𝜋

𝐿

𝐺 =
𝛼2𝜋

𝐿
General:

⋯ 𝐺 =
2𝜋

𝐿

imagreal

𝒙

𝒙

𝒙



𝒙

Fourier Series Expansion of Potential

𝑉 𝒓 + 𝑹 = 𝑉 𝒓

⋯⋯

⋯
2𝐺 =

4𝜋

𝐿

General: 𝐺 =
𝛼2𝜋

𝐿

⋯

𝐺 =
2𝜋

𝐿
⋯

imagreal

𝒙

𝒙



General Fourier Expansion

𝑉 𝒓 + 𝑹 = 𝑉 𝒓

⋯⋯

𝑉 𝒓 =



𝑉 𝑮 𝑒
𝑮!𝒓 𝑉 𝑮 =

1

Ω




𝑉 𝒓 𝑒
𝑮!𝒓 𝑑𝒓

Plane wave expansion:

𝜓,𝒌 𝒓 = 𝑒
𝒌𝒓

𝑢, 𝒓

𝜓,𝒌 𝒓 = 𝑒
𝒌𝒓∑

 𝑢, 𝑮 𝑒
𝑮!𝒓

𝜓,𝒌 𝒓 =



∑
 𝑐,(𝒌)𝑒

𝒒𝒓

𝒒 = 𝒌 + 𝑮

𝒙



Plane Waves

| ⟩𝒒 =



𝑒
𝒒𝒓

| ⟩𝒒

=




𝑒
𝒒

"
𝒓 𝒒


= 𝐤+ 𝑮


"

𝒒 = 𝐤 + 𝑮

𝒒

𝒒 =




∫

𝑒
𝒒

"
𝒓
𝑒
𝒒𝒓

𝑑𝒓 = 𝛿
𝒒,𝒒

"

orthogonal

basis

set

𝐻
,

"(𝒌) = 𝒒
 𝐻 𝒒 = 𝐤 + 𝑮

𝐻 𝐤 + 𝑮

"

=
1

2
𝐤 + 𝑮


𝛿
,

" + 𝑉(𝑮 − 𝑮")

Hamiltonian

matrix

elements

𝐻 = −
1

2
∇

+ 𝑉(𝒓)

𝒒

−
1

2
∇

𝒒 =

1

2
𝒒

𝛿
𝒒,𝒒

" 𝒒

𝑉(𝒓) 𝒒 =

""

𝑉 𝑮

"" 𝛿

𝒒𝒒
"
,𝑮
!
""

Hamiltonian operator



Plane Wave Matrix for each k-point

𝐻
,

"(𝒌) =
1

2
𝐤 + 𝑮


𝛿
,

" + 𝑉(𝑮 − 𝑮")

𝑃𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 𝑐𝑢𝑡𝑜𝑓𝑓: 𝑮 →
1

2
𝑮


e.g., 600 eV

𝑇(𝒌),

𝑇(𝒌),

⋱

𝑇(𝒌),

⋱

𝑇(𝒌),

Off diagonal: 𝑉(𝑮
 −

𝑮
 ")

Off diagonal: 𝑉(𝑮
 −

𝑮
 ")



Diagonalize and Solve at Many K-points

𝐻
,

"(𝒌) =
1

2
𝐤 + 𝑮


𝛿
,

" + 𝑉(𝑮 − 𝑮")

𝐻(𝒌) {𝑐, (𝒌)} = 𝜀(𝒌){𝑐, (𝒌)} vector 1×N

Key computing problem

# plane waves

matrix N×N

𝜌(𝒓) =
1

𝑁








𝜓, 𝜓,
∗𝜓,𝒌=




∑
 𝑐,(𝒌)𝑒

𝒒𝒓

𝒒 = 𝒌 + 𝑮



Defects in Crystals: Supercells

=> All of these periodic expansion methods can also be applied to

study defects and even chemical reactions (as an array of periodic

“supercells”)…

R

“supercell”point defect



Defects in Crystals: Supercells

=> Many types of defects can be studied with supercells….

…HW: with a linear increase in each dimension, the number of

sampling k-points needed decreases linearly (zone folding).



Back to the Matrix Problem…

𝐻
,

"(𝒌) =
1

2
𝐤 + 𝑮


𝛿
,

" + 𝑉(𝑮 − 𝑮")

𝐻(𝒌) {𝑐, (𝒌)} = 𝜀(𝒌){𝑐, (𝒌)} vector 1×N

Key computing problem

# plane waves

matrix N×N

𝜌(𝒓) =
1

𝑁








𝜓, 𝜓,
∗𝜓,𝒌=




∑
 𝑐,(𝒌)𝑒

𝒒𝒓

𝒒 = 𝒌 + 𝑮



Reducing the Matrix Size

0 eV
Si Si Si Si Si Si

valence band

conduction band

R

𝑉 𝒓 “𝑡𝑟𝑢𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙”

𝑐
𝑜
𝑟
𝑒
𝑙𝑒
𝑣
𝑒
𝑙𝑠

=> The “true” lattice potential is actually very sharp, requiring

many plane waves to represent in a plane wave basis…

𝜀

𝑉 𝒓 =



𝑉 𝑮 𝑒
𝑮!𝒓

Recall:



Reducing the Matrix Size

=> Recall the “ion-core” approximation…

0 eV
Si Si Si Si Si Si

valence band

conduction band

R

𝑉 𝒓 “𝑖𝑜𝑛 𝑐𝑜𝑟𝑒”

𝑉 𝒓 =



𝑉 𝑮 𝑒
𝑮!𝒓

=> A much smoother potential can be represented by much fewer

plane waves in Fourier transform…

𝑮→
1

2
𝑮



e.g., 600 eV

𝑃𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 𝑐𝑢𝑡𝑜𝑓𝑓:

𝜀



Towards Pseudopotentials

=> Scattering errors (etc.) from “just” an “ion-core” …

0 eV
Si Si Si Si Si Si

valence band

conduction band

=> Introduce non-local term to fix scattering & other properties

in the ion-core approximation…

𝐻 = −
1

2
∇

+ 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓 + 𝑉

non-local“ion-core”

valence electrons

𝜀



Reducing the Matrix Size

=> Revised Hamiltonian to reduce the number of plane waves

(matrix size)….

𝐻 = −
1

2
∇

+ 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓 + 𝑉

valence electrons

𝑉 𝒓 = 𝑉 𝒓 +𝑉 𝒓 + 𝑉

𝑉 = 𝑉 𝒓 + 𝑉

frozen core electrons &

nuclei

Pseudopotential: smoother than bare

nuclear potential

=> Pseudopotentials are constructed in the atomic limit….

Ex:

Carbon



Pseudopotentials

=> Recall, atomic orbitals have the general form…

…with orthogonality imposed by radial and angular oscillations.

=> A pseudopotential equals an all-electron orbital beyond a cutoff…

U used to distinguish potential (V) in the atomic limit



Pseudopotentials

=> One approach is to create a separate “pseudopotential” for

each atomic orbital (angular momentum s,p,d,etc.)…

… if the radial wavefunction is nodeless and smooth, so also will

its pseudopotential.



Pseudopotentials

=> The fitted pseudowavefunction must obey the below “rules”…



Pseudopotentials

=> From the pseudowavefunction the pseudopotential is constructed

for each scattering state….

Pseudopotential for a given angular momentum



Pseudopotentials

=> Kerker or Troullier-Martins pseudopotential fits….

… but there are many types of pseudopotentials. Projector

augmented waves are a variation on this theme, more common

in typical planewave codes (e.g., VASP).



Pseudopotentials

=> Using the Kerker method the fit would take the form…

...more accurate methods are now commonly used (illustrative only).



Pseudopotentials

=> Creating an effective ion-core (many possible variations)…

𝜌

𝑈

𝑈

𝜌

𝜌
𝜌

𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒

=> Valence charge potential contributions (one atom)….

𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑐ℎ𝑎𝑟𝑔𝑒

𝜌

𝜌 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑎𝑖𝑙

𝑈[𝜌] + 𝑈 𝜌



Pseudopotentials

=> Subtract out from the orbital pseudopotential….

𝑈



= 𝜀 −

1

2

𝑙(𝑙 + 1)

𝑟
−

1

𝑅



𝛻

𝑅




𝛿𝑈



= 𝑈




−𝑈 −𝑈 𝜌 − 𝑈 𝜌

=> Insert and reconstruct single-atom Hamiltonian….

𝐻 = −
1

2
𝛻

+𝑈 𝒓 + 𝑈 𝜌 +𝑈 𝜌 +

𝑈

𝑈 =



| 𝜓



𝛿𝑈




𝜓




|

𝜓



𝜓




𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

…. non-locality also enters in the potential Fourier transform (HW).

𝑛𝑜𝑛 − 𝑙𝑜𝑐𝑎𝑙



Pseudopotentials

=> The general crystal Hamiltonian then becomes...

𝐻 = −
1

2
∇

+ 𝑉 𝒓 + 𝑉 𝒓 + 𝑉 𝒓 + 𝑉

𝑉 𝒓 =


𝑈,

𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑉 𝒓 =


𝑈,

𝑐𝑒𝑛𝑡𝑟𝑒𝑑 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑎𝑡𝑜𝑚

𝑎𝑡𝑜𝑚 𝑖𝑛𝑑𝑒𝑥

=> Improper pseudopotential construction & “ghost states”….

… somewhat of an “art” requires transferability testing!

“𝑔ℎ𝑜𝑠𝑡 𝑠𝑡𝑎𝑡𝑒”
𝐸𝑥: ”𝐺ℎ𝑜𝑠𝑡 𝑆𝑡𝑎𝑡𝑒𝑠 𝑓𝑜𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒,

𝑛𝑜𝑟𝑚 − 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑖𝑛𝑔, 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜

𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑜𝑡𝑒𝑛𝑡𝑎𝑖𝑙𝑠”,

Phys. Rev. B 41, 12264 (1990)

Consequence: unphysical

material properties computed.



Crystals & Electron Waves

=> Previous Lecture Takeaways….

o Periodicity in the lattice gives rise to periodicity in the

electron density;

o Electrons ”move” as waves on crystal lattices;

o The energies of various electron wavevectors, band

structure, gives important electronic structure (metal,

semiconductor, insulator) and optical information.

=> This Lecture Takeaways….

o Electron density periodicity in the unit cell can be solved in

a plane wave expansion (other expansions in another

lecture)…

o This can also be done for supercells to study defects (etc.).

o Core electrons and nuclear potentials require a very large

basis set to represent accurately, hence the use of

pseudopotentials (to reduce the matrix size)…

o Computational scaling is a constant challenge in DFT, basic

matrix inversion/diagonalization to obtain the wavefunction

eigenvalues and eigenvectors scales as O(N 3) or so.

….pardon typos/errors within.


