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New Era of Materials Research

A. Agrawal and A. Choudhary, APL Materials 4, 053208 (2016)

The research toolkit for materials science now
includes powerful data-driven approaches



Workflows in Materials Modelling

K. T. Butler et al, Nature 559, 547 (2018)
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Artificial Intelligence
Computational techniques that mimic human intelligence

ARTIFICIAL INTELLIGENCE (AI)
(entire knowledge field)

MACHINE LEARNING (ML)
(data-driven statistical models)

Supervised Unsupervised Reinforcement

DEEP LEARNING
(multi-layered neural networks)

Nobel Prize in Physics (2024) to G. Hinton and J. Hopfield



Lecture Contents

1. Machine Learning Basics

2. Deep Learning Essentials

3. Models of Materials

4. Advances in AI for Science



What is Machine Learning (ML)?
Statistical algorithms that learn from training data

and build a model to make predictions

Data types
Materials features can be binary (e.g. stability),

categorical (e.g. symmetry), integer
(e.g. stoichiometry), continuous (e.g. rate)

Learning types
Unsupervised (identify patterns), supervised
(use patterns), reinforcement (maximise reward)



What is Machine Learning (ML)?
Statistical algorithms that identify and
use patterns in multi-dimensional datasets

Images from https://vas3k.com/blog/machine_learning

Predict a category, e.g.
decision trees to predict
reaction outcome

Predict a value, e.g.
regression to extract a
reaction rate

Group by similarity, e.g.
high-throughput
crystallography

Maximise reward, e.g.
reaction conditions to
optimise yield



Image from https://vas3k.com/blog/machine_learning

ML Model Map



ML ~ Function Approximation

Image from https://github.com/jermwatt/machine_learning_refined

Model selection, training, and testing tunes
a “complexity dial” for your problem of interest

Linear model Highly non-linear model

Underfit regime Overfit regime



Function Approximation

You should recognise the underlying function from undergraduate classes



Function Approximation

My reference function to generate data for model training and testing



Function Approximation

Underfitting Overfitting

Fitting

Default parameters with the scikit-learn Python package; Root mean square error (RMSE)



Function Approximation
Standard expansions work in low dimensions (D).
Real problems face the “curse of dimensionality”

An exponential increase in the data requirements
needed to cover the parameter space effectively, O(eD)

M. M. Bronstein et al, arXiv:2104.13478 (2021)



Model
assessment

Typical Supervised ML Workflow
Initial dataset
x, y

Data cleaning and
feature engineering

The exact workflow depends on the type of problem and available data

Model
training and
validation

Final
model

xnew

ypredict

Test (20%)
xtest, ytest

Train (80%)
xtrain, ytrain

Human
time
intensive

Computer
time
intensive

Production



Correlation Coefficient (r)
Describes the strength of the relationship between
two variables (e.g. “ground truth” vs predicted values)

r ∊ [-1,1]

Positive: variables change
in the same direction

Zero: no relationship
between the variables

Negative: variables change
in opposite directions

*Outlined by Auguste Bravais (1844); https://bit.ly/3Kv75GJ

Reminder: correlation does not imply causation

Pearson correlation*
𝑥𝑦 =

σ ( − ҧ)( − ത)
σ ( − ҧ)2 σ ( − ҧ)2



Coefficient of Determination (r2)
Measure of the goodness of fit for a model.

Describes how well that known data is approximated
r2 ∊ [0,1]

Zero: baseline model with no
variability that predicts

0.5: 50% of the variability
in y is accounted for

One: model matches
observed values of y exactly

S. Wright “Correlation and Causation”, J. Agri. Res. 20, 557 (1921)

Note: a unitless metric. Alternative definitions are sometimes used

2 =  − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡ഥ𝒚

2 =  − σ𝑖1
𝑛 𝑖 2

σ𝑖1
𝑛 (𝑦𝑖 ത𝑦)2

Three equivalent definitions



Classification Metrics
Confusion (or error) matrix provides

a summary of classification model performance

K. Pearson “Mathematical Contributions to the Theory of Evolution” (1904)

Actual
class

Predicted class

+

+

-

-

70 0
0 30

Perfect model to classify
metals and insulators

(N = 100)

66 4
8 
My best
model

Accuracy = Correct/Total

(70+30)/100 = 100 %

(66+22)/100 = 88 %



Application to “Synthesisability”

G. H. Gu et al, npj Computational Materials 8, 71 (2022)

Graph
neural
network

(9% positivity)

Learn from known materials (positive samples)
and unknown materials (unlabelled samples )

Chemical rules

Application to
ABX3

perovskites

Likelihood of formation

Classification model



Correlation, Causation…

F. Messereli, New England Journal of Medicine 367, 1562 (2012)

Chocolate

Nobel
prizes

Correlation

Confounder

Causation

Causation

Causal Inference



Towards Scientific Rule Discovery
Combining data with background knowledge

R. Cory-Wright et al, Nature Comm. 15, 5922 (2024)

Symbolic
regression has
been popular
(with mixed
results)



Towards Scientific Rule Discovery
Combining data with background knowledge

R. Cory-Wright et al, Nature Comm. 15, 5922 (2024)

Kepler’s Law
“re-discovered”
with ~50 data
points

Symbolic
regression has
been popular
(with mixed
results)
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Artificial Neuron
Neurons transmit chemical and electrical signals
in the brain. Artificial neurons mimic this
behaviour using mathematical functions

Image: BioMed Research International

Biological neuron Artificial neuron

Cell nucleus Node
Dendrites Input
Synapse Weights

(Interconnects)
Axon Output

The human brain has ~ 1011 neurons and 1015 synapses (~1015 FLOPS)



x1

x2

x3

x4

x5

w1
w2
w3
w4
w5

Artificial Neuron
The perceptron is a binary neural network classifier:
weighted inputs produce an output of 0 or 1

F. Rosenblatt, Cornell Aeronautical Laboratory, Report 85-460-1 (1957)

y = f(w·x+b)
Output

Activation
function

Weighted
input

Bias (constant)

if ∑xiwi + b > threshold:

output = 1
else
output = 0
Weights are adjusted to
minimise the model error



Activation Function
w·x+b is simply a linear combination.

Activation function f(w·x+b) introduces non-linearity

Image from https://towardsdatascience.com

Activation function Derivative

Common for deep learning

Perceptron model

Common for deep learning

Popular in early models



Activation Function
Corresponding weights and thresholds
are learned (fit) during model training

Image from https://towardsdatascience.com

Activation function Derivative

Common for deep learning

Perceptron model

Common for deep learning

Popular in early models



Neural Network Architecture

Image generator: https://alexlenail.me/NN-SVG

Basic neural network: One or two layers
Deep neural network: Three or more layers

Three layer
model

(input layer is
excluded in counting)



Neural Network Architecture

Image generator: https://alexlenail.me/NN-SVG

Basic neural network: One or two layers
Deep neural network: Three or more layers

Five layer
model

Note the layer 2
bottleneck

Why? Compressed
representation



Universal Function Approximators
Multilayer neural networks can approximate any
continuous function to any desired accuracy

K. Hurt, M. Stinchcombe and H. White, Neural Networks 2, 359 (1989)

Practical performance will depend on the number of hidden layers,
choice of activation function, and training data



Universal Function Approximators

S. J. D. Prince “Understanding Deep Learning”

The combination of two single-layer networks
with three hidden ReLU units each



Universal Function Approximators
Extrapolation outside training region is
not guaranteed (no fixed functional form)

Four models with the
same performance
(in grey region)

A major issue with
machine learning
force fields…

Be cautious with out -of- distribution (OOD) applications



Types of Layer in Deep Learning
Layers are combined to learn representations
and capture data patterns effectively

• Dense (fully connected): neurons connected to every other neuron

• Convolutional: filter applied to grid-like input, extracting features

• Pooling: reduce spatial dimensions, retaining key information

• Recurrent: incorporate feedback loops for sequential data flow

• Dropout: randomly zero out inputs to mitigate overfitting in training

• Embedding: map categorical variables into continuous vectors

• Upscaling: increase spatial resolution of feature maps

Self-study is needed if you want to delve deeper into these



Convolutional Filters
Small matrices (kernels) that extract features
from data by performing localised operations

2D input data Kernel (filter) Output

1 0 1 0 1 0

0 1 1 0 1 1

1 0 1 0 1 0

1 0 1 1 1 0

0 1 1 0 1 1

1 0 1 0 1 0

1 2 3

4 5 6

7 8 9

learned weights

* =

Kernel passes over the input data, capturing patterns at different
locations, enabling the network to learn and detect specific features

Filters are translation equivariant and can be tailored for rotational symmetry



Convolutional Filters
Small matrices (kernels) that extract features
from data by performing localised operations

2D input data Kernel (filter) Output

1 0 1 0 1 0

0 1 1 0 1 1

1 0 1 0 1 0

1 0 1 1 1 0

0 1 1 0 1 1

1 0 1 0 1 0

1 2 3

4 5 6

7 8 9

learned weights

31

* =

Sum of element-wise products:
1*1+0*2+1*3+0*4+1*5+1*6+1*7+0*8+1*9 = 31

Filters are translation equivariant and can be tailored for rotational symmetry



Convolutional Filters

Image: I. Goodfellow, Y Bengio, A. Courville, “Deep Learning”



Quiz
What would these kernels do to an image?

Kernel A

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Kernel B

-1 -1 -1

2 2 2

-1 -1 -1

Kernel C

-1 -1 -1

-1 8 -1

-1 -1 -1

An image of the proposed room-temperature superconductor LK-99



Quiz
What would these kernels do to an image?

Kernel A

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Kernel B

-1 -1 -1

2 2 2

-1 -1 -1

Kernel C

-1 -1 -1

-1 8 -1

-1 -1 -1

Blur Horizontal lines Edge detection

An image of the proposed room-temperature superconductor LK-99



Towards State of the Art (SOTA)

Example from https://towardsdatascience.com

VGG16 Computer Vision Model

Softmax is an activation function common in the
output layer of a neural network for classification tasks

Modern deep learning models combine many
layer types with 103-1012 parameters



Towards State of the Art (SOTA)
Modern deep learning models combine many
layer types with 103-1012 parameters

Appearance of the Boltzmann distribution
(deep learning models often borrow from statistical mechanics)

Partition function

Softmax

Input vector Class probability



Application to Microscopy

Fintan Hardy (Unpublished, 2025) in collaboration with Shelly Conroy

Automated feature identification in high-resolution
microscopy to aid analysis & suggest measurements

4D STEM: A single
experiment captures
large dataset in real
& reciprocal space

Identification of
hidden polarisation
domains using CNNs
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Representation of Materials
Model performance depends on the choice of
compositional and structural features

Minimal representation

Input:
Atomic number, Z
Coordinates, R

Output:
Properties

Ab initio quantum mechanics (QM)

ൿ෡𝐇|Ψ = ۧE|Ψ
electronic
wavefunction

Effective representation

Input:
Feature vector, 𝐗

Output:
Properties

Supervised machine learning (ML)
 = 𝑓 𝐗, 𝚯

learned
weights

K. T. Butler et al, Nature 559, 547 (2018)



How to Best Represent a Material?
Many possible materials features

from atomistic to macroscopic length scales

Wavefunctions
or electron density

(Å)

Electronic

Local atomic
connectivity
(nm)

Atomic

Grain size and
orientation
(µm)

Microstructure

Shape
(cm)

Macroscale

Image after Taylor Sparks (University of Utah)



A. Compositional Features



Hot Encoding
We can use an n-dimensional vector to categorise
the atomic number of the elements in a compound

[100000000...]
H He Li Be B C N O F….

[000001010...]
H He Li Be B C N O F….

Element (One-hot)

Compound (Multi-hot)

'1' indicates the presence of that specific element and '0' for others



Hand-Built (Local) Representations
We can define elemental feature vectors

based on standard properties of the elements

22 dimensional Magpie representation from
L. Ward et al, npj Comp. Mater. 2, 16028 (2016)

https://github.com/WMD-group/ElementEmbeddings



Hand-Built (Local) Representations
We can also define compound feature vectors
based on standard properties of the elements

X(Fe2O3) = [2X(Fe) + 3X(O)]/5

https://github.com/WMD-group/ElementEmbeddings

X1 X2 X3 … Xn
Fe 0.52 0.11 0.01 0.80

O 0.32 0.23 0.14 0.64

Fe2O3 0.40 0.18 0.09 0.70

Different types of pooling is possible (e.g. max, min, mean)



Learned (Distributed) Representations

SkipSpecies
200 D
Structure
graph pooling

Mat2Vec
200 D

Literature word
embedding

https://github.com/WMD-group/ElementEmbeddings

We can learn continuous feature vectors with
elemental information as part of model training



Element Embeddings
Toolkit to access and modify elemental and

compositional representations for machine learning

https://github.com/WMD-group/ElementEmbeddings

Latest embeddings
CrystaLLM
SkipSpecies
CGNF
XenonPy

Dr Anthony Onwuli



B. Structural Features



Learn from Crystallography
7 crystal systems, 14 Bravais lattices,

230 space groups, 103 prototype structures

Conventional description
Unit cell (ℒ)
a, b, c, ⍺, β, ɣ
Atom types (𝒜)
Sn, Ti, O…

Fractional coordinates (𝒳)
(x1, y1, z1)…

Problem for ML: conventional description lacks invariance*

*with respect to atomic permutation, unit cell rotations, and translations



Unit Cell Transformations
The same structure is described in each case

Two-atom orthorhombic unit cell

Atomic permutation Crystal rotation Unit cell translation

ML models based on variant representations struggle to generalise



Structural Representations
Many structural descriptors have been developed

Several are implemented in https://singroup.github.io/dscribe

• Atom-Centered Symmetry Functions (Behler, 2011)
- site expansion of radial and angular terms

• Coulomb Matrix (Rupp et al, 2012)
- mimics electrostatic interactions (qiqj/rij)

• Many Body Tensor Representation (Huo et al, 2017)
- distribution of local structural motifs

• Atomic Cluster Expansion (Drautz, 2019)
- high body-order expansion of atomic environments



Real Space Grid
Voxels (three-dimensional pixels) used

in computer graphics can describe a unit cell

Image courtesy of Taylor Sparks (University of Utah)

Used in early materials ML, but not recommended for structure



Pairwise Interatomic Distances
Coulomb matrix is a global descriptor that

mimics the electrostatic interaction between nuclei

Implemented in https://singroup.github.io/dscribe

Sine matrix is a modification that accounts for periodicity



Invariant Structural Representations

Comprehensive review: F. Musil et al, Chem. Rev. 121, 9759 (2021)



Invariant Structural Representations
Atomic Cluster Expansion (ACE) provides a
systematic representation of atomic environments
through radial (R) and angular (Y) terms

𝜙  = 𝑅𝑙 𝑌𝑙𝑚Site basis function

Permutation invariance

Rotation (Q) invariance

R. Drautz, Phys. Rev. B. 99, 014104 (2019); arXiv:2311.16326 (2023)

Product basis B
forms a body-order
expansion

Property = 𝑓(𝑩,𝚯) ACE is used in linear and
deep learning models for materialsweights



ML Powered Force Fields

J. D. Morrow, J. L. A. Gardner and V. Deringer, J. Chem. Phys. 158, 121501 (2023)

Octahedral tilt correlation

Classical models are being complemented
by machine learning force fields (MLFF)

Three start-of-the-art implementations based on equivariant
neural network regression are MACE, Allegro, and SevenNet



Application to Superionic Crystals

J. Klarbring and A. Walsh, Chem. Mater. 36, 9406 (2024)

Octahedral tilt correlation

Ability to describe spatial and temporal disorder
in the site occupancies of complex materials

Fast Na ion diffusion in
W-doped Na3SbS4
27,648 atom supercells

2 fs timestep
48 ns (NPT) runs
Allegro model

https://github.com/mir-group/allegro



Note on Pre-trained Force Fields

https://matbench-discovery.materialsproject.org

Octahedral tilt correlation

Beware of Goodhart's law: “When a measure
becomes a target, it ceases to be a good measure”

Evaluating the predictive power of force fields
for hypothetical compounds (w.r.t. DFT/PBE)



Note on Pre-trained Force Fields

https://huggingface.co/spaces/atomind/mlip-arena

Octahedral tilt correlation

Beware of Goodhart's law: “When a measure
becomes a target, it ceases to be a good measure”

Issues faced when forces
are not derivates of energy
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Natural Language Processing (NLP)
Branch of AI that focuses on the interaction
between computers and human language

Image from https://github.com/practical-nlp



Natural Language Processing (NLP)
Branch of AI that focuses on the interaction
between computers and human language

Easy

Hard

Spell checking

Text classification

Information extraction

Question answering

Conversational agent



Language Models
Large refers to the size and capacity of the model.
It must sample a literary combinatorial explosion

104 common words in English
108 two-word combinations
1012 three-word combinations
1016 four-word combinations

Language must be represented numerically
for machine learning models

Token: discrete scalar representation of word (or subword)

Embedding: continuous vector representation of tokens



Language Models
Predictive text

Using GPT-4 via https://github.com/hwchase17/langchain

I love materials because
of
they
their

shape
are
like

Top words
ranked by
probability

“Temperature” of the text choices

Sampling the
distribution
of probabilities
(“creativity”)

I love materials because they ignite a symphony
of vibrant colors, tantalizing textures, and
wondrous possibilities that dance in the realms
of imagination, transcending boundaries and
embracing the sheer beauty of creation itself.

I love materials because they are essential.

strong
essential
beautiful



Text to Tokens
Example: “ZnO is a wide bandgap semiconductor”

https://platform.openai.com/tokenizer

[57, 77, 46, 374, 3094,
4097, 43554, 39290, 87836]

Token-IDs

The model looks up 768 dimensional embedding vectors
from the (contextual) embedding matrix

Note that Zn is
split into two
tokens

(not ideal for
chemistry)



Large Language Models

T. N. Brown et al, arXiv:2005.14165 (2020)

GPT = “Generative Pre-trained Transformer”
Generate
new content

Trained on a
large dataset

Deep learning
architecture

User
Prompt

Encode to a
vector

Transformer layers
analyse relationship between
vector components; generate
transformed vector

Decode to
words Response

Key components of a transformer layer
Self-attention: smart focus on different parts of input

Feed-forward neural network: capture non-linear relationships



Large Language Models

B. Geshkovski et al, arXiv:2312.10794 (2023)

Ongoing analysis into the physics of the transformer
architecture, e.g. rapid identification of strong
correlations and drift to a mean-field description

Focus on
important inputs

Normalise
for stability

Non-linear
transformation

Normalise
for stability



Large Language Models

Image from https://towardsdatascience.com

Deep learning models trained to generate text
e.g. BERT (370M, 2018), GPT-4 (>1012, 2023)

Recent models
include:
Llama-3
(Meta, 2024)

Gemini
(Google, 2024)

GPT-4
(OpenAI, 2023)

PanGu-Σ
(Huawei, 2023)



Large Language Models

T. N. Brown et al, arXiv:2005.14165 (2020)

Essential ingredients of GPT and related models

Diverse
data

Deep
learning
model

Validation
on tasks



Secret to Practical Success of LLMs

RLHF = Reinforcement Learning Human Feedback; Drawing from @anthrupad

Patterns

Focus

Alignment



Large Language Models
What are the potential drawbacks and

limitations of LLMs beyond computational cost?

• Training data, e.g. not up to date, strong bias

• Context tracking, e.g. limited short-term memory

• Hallucination, e.g. generate false information

• Ownership, e.g. fair use of training data

• Ethics, e.g. appear human generated

Several of these points are being addressed as models mature



LLMs for Materials
Many possibilities, e.g. read a textbook and ask

technical questions about the content

“The Future of Chemistry is Language” A. D. White, Nat. Rev. Chem. 7, 457 (2023)



LLMs for Materials
Language models tailored to be fact-based with
clear context. Applied to one of my review papers

https://github.com/whitead/paper-qa



LLMs for Materials

L. M. Antunes et al, Nature Comm. 15, 10570 (2024); https://crystallm.com

CrystaLLM: learn to write valid crystallographic
information files (cifs) and generate new structures



LLMs for Materials
CrystaLLM: learn to write valid crystallographic
information files (cifs) and generate new structures

Training set 2.2 million cifs
Validation set 35,000 cifs
Test set 10,000 cifs

Custom tokens: space group symbols, element
symbols, numeric digits. 768 million training
tokens for a deep-learning model
with 25 million parameters

L. M. Antunes et al, Nature Comm. 15, 10570 (2024); https://crystallm.com



LLMs for Materials
Integrate a large language model into

scientific research workflows

D. A. Boiko et al, Nature 624, 570 (2023)



LLMs for Materials
Combine text and structural data for

multi-model models using contrastive learning

Hyunsoo Park, A. Onwuli and A. Walsh, ChemRxiv (2024)

Rich representations for

text-to-compound generation

Denoising diffusion
with Chemeleon



Sampling Materials Space
A high-dimensional space combining chemical
composition, structure, processing, properties

If a probability distribution is learned for a diverse set
of known materials, it may be used to target new compounds

H. Park, Z. Li and A. Walsh, Matter 7, 2358 (2024)



Autoencoder

P. Baldi and K. Hornik (1989); Schematic adapted from https://synthesis.ai

Neural network compresses data into a deterministic
latent space and reconstructs it back to the original



Autoencoder

P. Baldi and K. Hornik (1989); Schematic adapted from https://synthesis.ai

Lack of continuity and structure makes interpolated or
random points unlikely to map to meaningful data



Variational Autoencoder

D. P. Kingma and M. Welling (2013); Schematic adapted from https://synthesis.ai

Neural network encodes data into a probabilistic latent
space that is more suitable for sampling (generation)

mean st. dev.



Generative Artificial Intelligence

All images were generated by DALL-E 3 (OpenAI)

Create realistic data by sampling from
learned latent space (probability distributions)

Image decoder

Text encoder
“A frog in a
sci-fi world”

Text-to-image generation
where encoders and
decoders are trained on

diverse data



Generative Artificial Intelligence

H. Park, Z. Li and A. Walsh, Matter 7, 2358 (2024)

Growing range of generative architectures
can be tailored for scientific problems



Application to Materials Design

H. Park, A. Onwuli and A. Walsh, ChemRxiv (2024)

GenAI models can be used in different ways, e.g.
• map from composition to crystal structure
• unguided sampling of a random compound
• guided sampling to specific properties



Chemeleon Example

https://github.com/hspark1212/chemeleon

As easy as “pip install chemeleon”



Dive Deeper
AI content available from many sources, including
blogs, research papers, repositories, and textbooks
e.g. https://aronwalsh.github.io/MLforMaterials/Resources.html

General Specialist


