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New Era of Materials Research

The research toolkit for materials science now

includes powerful data-driven approaches
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A. Agrawal and A. Choudhary, APL Materials 4, 053208 (2016)



Workflows in Materials Modelling

Input Quantum Mechanics
C " . Output
omposition —
P H|LP> — E|lIJ) Properties
and structure electronic
wavefunction
Input Machine Learnin
c P . X 0 d Output
omposition —
P y f( ! ) Properties
and structure learned
weights
Input Inverse Design Output
Targejr 0(0) = walpa(a) _ Pcfargetl Composition
properties ~ configuration and structure
property

|
K. T. Butler et al, Nature 559, 547 (201 8)



Artificial Intelligence

Computational techniques that mimic human intelligence

/ ARTIFICIAL INTELLIGENCE (Al) \

(entire knowledge field)

s MACHINE LEARNING (ML) N\

(data-driven statistical models)

Supervised Unsupervised Reinforcement

£ DEEP LEARNING h

(multi-layered neural networks)

—_———————

Nobel Prize in Physics (2024) to G. Hinton and J. Hopfield
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What is Machine Learning (ML)?

Statistical algorithms that learn from training data

and build a model to make predictions

Learning types
Unsupervised (identify patterns), supervised
(use patterns), reinforcement (maximise reward)

Data types
Materials features can be binary (e.g. stability),
categorical (e.g. symmetry), integer
(e.g. stoichiometry), continuous (e.g. rate)




What

is Machine Learning (ML)?

Statistical algorithms that identify and

use patterns in multi-dimensional datasets

Regression
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Predict a value, e.g. Predict a category, e.g.

regression to extract a ¥ decision trees to predict

reaction rate LIRS reaction outcome

Classification

S Action >
Group by similarity, e.g. W Maximise reward, e.qg.
high-throughput W reaction conditions to

crystallography optimise yield
Reinforcement

Clustering

o
Learning

Images from https: //vas3k.com/blog /machine_learning



ML Model Map

DBSCAN Ciion i
K-Means Agglomerative Ve Bayes
Mean-Shift ” K-NN SVM Desision Trass
Fuzzy C-Means @ Classification ) Logistic Regression

Euclat
Linear Regression
(1 oLynomio
St 9 Regx-essaon
Regression
DIMENSION REDUCTION
(generalization
£-SNE LDA CLASSICAL
PCA LSA SO
LEARN|NG Rondom Forest
REINFORCEMENT MAC‘-“NE Eh:IES%-TgéSE
LEARNING LEARNING
Genetic Q-Learning . XGBoost
: Boosting
Algorithm SARSA  Desp Q-Network AdaBoost LightGBM
A3C (DQN) CatBoost

NEURAL
NETS AND
DEEP LEARNING

Convolutional

Perceptrons
(MLP)

Recurrent

Neural Networks
LSM (RNN) seq2seq
Generative
Adversarial Networks
LST™ (GAN)

GRU

Image from https://vas3k.com/blog/machine_learning



ML ~ Function Approximation

Model selection, training, and testing tunes
a “complexity dial” for your problem of interest
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Image from https: //github.com /jermwatt /machine_learning_refined



Function Approximation

Training Set
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You should recognise the underlying function from undergraduate classes



Function Approximation

truth(r):
=1
= (/xr)**12 - ( /r)**6

return v

xXvals np.arange(l, 2, 0.01)
yvals truth(xvals)

|
My reference function to generate data for model training and testing



Function Approximation

Linear Regression Decision Tree
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Default parameters with the scikit-learn Python package; Root mean square error (RMSE)



Function Approximation

Standard expansions work in low dimensions (D).
Real problems face the “curse of dimensionality™

An exponential increase in the data requirements
needed to cover the parameter space effectively, O(eP)

M. M. Bronstein et al, arXiv:2104.13478 (2021)



Typical Supervised ML Workflow

Initial dataset

xl
Human 11
time
intensive Data cleaning and
feature engineering
; Production
Train (80%) Test (20%) [ ——
CompU fer x’rrqinl Y’rrqin x’resfl Y’rest xneW
time .--------{ ------ .
intensi ! Model E Model Final
intensive L aini q
i rcln.mg ,Om i assessment model
\___validation__ |
yBredic’r

The exact workflow depends on the type of problem and available data



Correlation Coefficient (r)

Describes the strength of the relationship between
two variables (e.g. “ground truth” vs predicted values)

re[-1,1]

Positive: variables change .o
Pearson correlation

in the same direction

Txy
Zero: no relationship
between the variables

Negative: variables change
in opposite directions

Reminder: correlation does not imply causation

1 (i = ©)(01 = 7)
Vi (i = %)% Y2 i = %)?

*Qutlined by Auguste Bravais (1844); https:/ /bit.ly /3Kv75G])



Coefficient of Determination (r?)

Measure of the goodness of fit for a model.
Describes how well that known data is approximated

r2e [0,1]

Lero: baseline model with no
variability that predicts y

0.5: 50% of the variability
in y is accounted for

One: model matches
observed values of y exactly

e

Three equivalent definitions

2 _ | _ SSres |
SStot
dicted
s T (yeyprediacy
re=1- n =2
Yie1Vi—Y)
YL i-¥)? B

Note: a unitless metric. Alternative definitions are sometimes used

S. Wright “Correlation and Causation”, J. Agri. Res. 20, 557 (1921)



Classification Metrics

Confusion (or error) matrix provides
a summary of classification model performance

i Predicted class
+ =
True positive  False negative ]
Actual * (TP) (FN)
class False positive  True negative
i (FP) (TN)
[70 0 ] [66 L ] Accuracy = Correct/Total
0 30 S 22 (70+30)/100 = 100 %
Perfect model to classify My best _ .
metals and insulators model (66+22)/100 = 88 %
(N =100)

|
K. Pearson “Mathematical Contributions to the Theory of Evolution” (1904)



Application to “Synthesisability”

Learn from known materials (positive samples)

and unknown ma’renals (unlabelled samples )
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Likelihood of formation

G. H. Gu et al, npj Computational Materials 8, 71 (2022)



Correlation, Causation...

35- Causal Inference
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F. Messereli, New England Journal of Medicine 367, 1562 (2012)



Towards Scientific Rule Discovery
Combining data with background knowledge

Classic Scientific Discover)> New Formula
1
1
1
1
! 1

_________________________________

Symbolic

regression has
ML/Regression > :[ New Formula ] been pOpUlCII’
(with mixed

results)

-
R. Cory-Wright et al, Nature Comm. 15, 5922 (2024)



Towards Scientific Rule Discovery
Combining data with background knowledge

Classic Scientific Discoven> New Formula
1
1
1
1
! 1

Symbolic
regression has
ML/Regression > - »{ NewFomua |  been popular
(with mixed

results)
Al-Descartes > New Formula
Kepler's Law

“re-discovered”
Al Hilbert > :{ New Formula Wifh ~50 CICI'I'CI
points

R. Cory-Wright et al, Nature Comm. 15, 5922 (2024)
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Artificial Neuron

Neurons transmit chemical and electrical signals
in the brain. Artificial neurons mimic this
behaviour using mathematical functions

Biological neuron Artificial neuron [N

Cell body

Myelin sheath

Cell nucleus Node
Dendrites Input

Synapse Weights )

(Interconnects) :/m> el

Axon Output W Kk

The human brain has ~ 10'' neurons and 10'° synapses (~10'> FLOPS)

Image: BioMed Research International



Artificial Neuron

The perceptron is a binary neural network classifier:
weighted inputs produce an output of O or 1

Weighted
Output input
y = f(w-x+b)
Activation
X function
W [ ]
: if > x.w: + b > threshold:
X9 Wo
output = 1
w
%30 : else
w
X4 W, output = 0
X5 Weights are adjusted to
minimise the model error
Input Layer € R® Output Layer € R?

|
F. Rosenblatt, Cornell Aeronautical Laboratory, Report 85-460-1 (1957)



Activation Function

w-:x+b is simply a linear combination.

Activation function f(w*x+b) introduces non-linearity

Identity

Binary step

Logistic (a.k a
Soft step)

TarH

ArcTan

Rectified
Linear Unit
(ReLT)

Parameteric
Rectified
Linear Unit
(PReLU) 2]

Exponential
Linear Unit
(£LY) (2

SoftPlus

et f(z) =

/ @ ={

Activation function

/ fl@)==

| [0 for <0
f(I)_{l for >0

J

1
14e*

| f(2) = tanh(z) =

f(z) = tan™'(z)

2
1+€—21 -

/ f(e 0 for 2 <0
x for x>0

ar for <0
xz for >0

/ fI)—{ ale*—1) for <0

e

x for >0

= log,.(1+ €")

Derivative

f'lz)=1

()5

{0 for = #0
N

? for =0

[e—y

)+a for <0
1 for >0

F@) = 7y
_J 0 for <0
“ 11 for >0
_J a for <0
" 11 for >0
f(x)=

l+e"

Perceptron model

Popular in early models

Common for deep learning

Common for deep learning

Image from https: / /towardsdatascience.com



Activation Function

Identity

Binary step

Logistic (a.k a
Soft step)

TarH

Rectified

Rectified
Linear Unit
(PReLU) 2]

Exponential
Linear Unit
(£LY) (2

SoftPlus

Activation function

)= tanb(a) = o -

14e 2=

f(z) = tan™'(z)

/ fo

0 for <0
x for x>0

ar for <0
/ f(.l')—{ T fOl' 120

| ae® - 1) for <0
/ f(x) = { x for >0
/ f(x) = log.(1+ €")

Derivative

[e—y

+
0 for <0
1 for >0

for x>0

)+a for <0
1 for >0

{
{c; for <0
{

Corresponding weights and thresholds
are learned (fit) during model training

Perceptron model

Popular in early models

Common for deep learning

Common for deep learning

Image from https: / /towardsdatascience.com



Neural Network Architecture

Basic neural network: One or two layers
Deep neural network: Three or more layers

\ Three layer

O D

=3 aa—~——¢ model
P ..

OS=27 == : -
= G (input layer is
% excluded in counting)

O
Input Layer € R12 Hidden Layer € R® Hidden Layer € R3 Output Layer € R!

Image generator: https://alexlenail.me /NN-SVG



Neural Network Architecture

Basic neural network: One or two layers
Deep neural network: Three or more layers

Five layer

model

Note the layer 2

bottleneck

Why2 Compressed
representation

Input Layer € R*® Hidden Layer € R* Hidden Layer € R? Hidden Layer € R Hidden Layer € R® Output Layer € R?

Image generator: https://alexlenail.me /NN-SVG



Universal Function Approximators

Multilayer neural networks can approximate any
continuous function to any desired accuracy

=

ot y
Comd 7

\\gf

Practical performance will depend on the number of hidden layers,

choice of activation function, and training data

K. Hurt, M. Stinchcombe and H. White, Neural Networks 2, 359 (1989)



Universal Function Approximators

Network 142

Network 1 Network 2
1.0 1.0 1.0
E \m r
0.0 0.0'0-
D O e === o 1 i
L 1 1 1 1 1 I
1 1 1 1 1 |
1 : ' V| 1 1 | Lo
1. ; o—0— -1.0 ; -1. ; o—0—
5% o 0.0 1.0 1.0 0.0 1.0 9% ® 0.0 1.0
Input, Input, y Input, x

The combination of two single-layer networks
with three hidden RelU units each

S. J. D. Prince “Understanding Deep Learning”



Universal Function Approximators

Extrapolation outside training region is
not guaranteed (no fixed functional form)

Model 1 Model 2
1.5 , , 1.5 , ,
1.0 - '—"/ 1.0 - ' '
0.5 A ! 0.5 A
> 0.0 - i > 0.0 | FOUI" models Wi'l'h fhe
—0.5 A | —0.5 A 1 1
_1_0_/: i 10l | i same performance
2 10 05 00 0?5 To 15 215 10 —c!).5 0.0 0?5 1.0 15 (in grey region)
X X
s Model 3 Ls Model 4
o | PZ L | | A maijor issue with
051 | 051 machine learning
|
> 0.0 1 i > 0.0 1 force erIdSooo
—-0.5 1 | —0.5 1
|
-1.0 - | -1.0 :
LA I e \
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -15 -1.0 -0.5 0.0 0.5 1.0 1.5
X X

Be cautious with out -of- distribution (OOD) applications



Types of Layer in Deep Learning

Layers are combined to learn representations
and capture data patterns effectively

]
* Dense (fully connected): neurons connected to every other neuron

* Convolutional: filter applied to grid-like input, extracting features
* Pooling: reduce spatial dimensions, retaining key information

* Recurrent: incorporate feedback loops for sequential data flow

* Dropout: randomly zero out inputs to mitigate overfitting in training

* Embedding: map categorical variables into continuous vectors

* Upscaling: increase spatial resolution of feature maps J

-
Self-study is needed if you want to delve deeper into these




Convolutional Filters

Small matrices (kernels) that extract features

from data by performing localised operations

2D input data

1 O
0 1
1 O
1 O
0 1
1 O

1

o O O

1

Kernel (filter) Ovutput

« MBI =

learned weights

Kernel passes over the input data, capturing patterns at different

locations, enabling the network to learn and detect specific features

Filters are translation equivariant and can be tailored for rotational symmetry



Convolutional Filters

Small matrices (kernels) that extract features
from data by performing localised operations

2D input data Kernel (filter) Output
O 1 O
0 1 1
0O 1 0 ---
1 o 1 1 1 0 ¥ --- -
o 1 1 0 1 1 ---
1 0 1 0 1 0 learned weights

Sum of element-wise products:

1#14+0%2+1*3+0%4+ 1¥5+1%6+1%7+0%8+1%9 = 31

Filters are translation equivariant and can be tailored for rotational symmetry



Convolutional Filters

Input
Kernel
c d
w T
g h
Yy z
k l
v Output
>
aw + bx + bw + cx + cw + dr +
ey + fz fy + gz gy + hz
ew + fr + fw + gxr + gw + hx +
1w+ jz jy +  kz ky + Iz

Image: |. Goodfellow, Y Bengio, A. Courville, “Deep Learning”



Quiz

What would these kernels do to an image?

Kernel A Kernel B Kernel C

Original Image

An image of the proposed room-temperature superconductor LK-99



Quiz

What would these kernels do to an image?

Kernel A Kernel B Kernel C

Horizontal lines Edge detection

An image of the proposed room-temperature superconductor LK-99



Towards State of the Art (SOTA)

Modern deep learning models combine many

layer types with 103-10'? parameters

conv1

VGG16 Computer Vision Model

convs
fc8
TW -
1x 1 4096 1 1x1000
14x14x512

77512

28 x 28 512

56 x 56 x 256

@ convolutional + ReLU
12x 112«14 @ max pooling

@ fully connected + ReLU

/Clx_/] softmax

224 x 224 x 64

Softmax is an activation function common in the
output layer of a neural network for classification tasks

Example from https: / /towardsdatascience.com



Towards State of the Art (SOTA)

Modern deep learning models combine many
layer types with 103-10'? parameters

Input vector Class probability
T3 0.0017
6 eZi/T 0.03
7 =7, 0.04
11 j=1€7 0.92
L 4 Partition function 10.014

Appearance of the Boltzmann distribution

(deep learning models often borrow from statistical mechanics)



Application to Microscopy

Automated feature identification in high-resolution
microscopy to aid analysis & suggest measurements

4D STEM: A single
experiment captures
large dataset in real
& reciprocal space

|dentification of
hidden polarisation ==
domains using CNNs

Fintan Hardy (Unpublished, 2025) in collaboration with Shelly Conroy
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Representation of Materials

Model performance depends on the choice of
compositional and structural features

Ab initio quantum mechanics (QM)
Input:

Atomic number, Z le) — E;l‘iP> POUpri:
elecironic °
Coordinates, R wavefunction roperties

Supervised machine learning (ML)

Input: Output:
y — f(XI 9) P o
Feature vector, X learned roperties
weights

|
K. T. Butler et al, Nature 559, 547 (201 8)



How to Best Represent a Material?

Many possible materials features
from atomistic to macroscopic length scales

Electronic Atomic Microstructure Macroscale
AA AN AN AN AN
VIV vVvVveyv
OV
vVvVvVev
OV VYVYVYS
vVvVvVvVvVvv
PUGER (b 4 A Ah Ah ) AN
vVvVvVvvVvVvVv
VOV VYWY
{ VvV VYV
e 4D H D
wvVwvwvwvw
Y2222
Woavefunctions Local atomic Grain size and sh
. . : : ape
or electron density connectivity orientation P
. (cm)
(A) (nm) (um)

Image after Taylor Sparks (University of Utah)



A. Compositional Features



Hot Encoding

We can use an n-dimensional vector to categorise
the atomic number of the elements in a compound

Element (One-hot)

[100000000...]

H He Li Be B C N O F....

Compound (Multi-hot)

[000001010...]

H He Li Be B C N O F....

'"1" indicates the presence of that specific element and '0' for others



Hand-Built (Local) Representations

We can define elemental feature vectors
based on standard properties of the elements

[
import elementembeddings
print(AtomEmbeds["magpie"].dim)

22

print(AtomEmbeds["magpie"].feature_labels)

'‘MeltingT', 'Column’,
ectroneg Lty \ , 'NpValence', '
1ce', 'NsUnfilled', 'NpUnfilled', 'NdUnfilled', 'NfUnfilled’,

'GSbandgap', 'GSmagmom', 'SpaceGroupNumber']

sValence!

vV \

22 dimensional Magpie representation from
L. Ward et al, npj Comp. Mater. 2, 16028 (2016)

I ——.
https:/ /github.com/WMD-group /ElementEmbeddings



Hand-Built (Local) Representations

We can also define compound feature vectors
based on standard properties of the elements

Fe203_magpie = CompositionalEmbedding(

X(Fe,O,) = [2X(Fe) + 3X(O)]/5

X X XX
BN o052 011 001 080
B 032 023 014 0.4
SN o040 018 009 070

Different types of pooling is possible (e.g. max, min, mean)

https:/ /github.com/WMD-group /ElementEmbeddings



Learned (Distributed) Representations

We can learn continuous feature vectors with
elemental information as part of model training

SkipSpecies lonic species representations for materials
500 D informatics
Structure | s oam 2 ez e o oo o & o ®
graph po oh'ng Published Online: 19 September 2024 0 {Ciatior rossMa
Anthony Onwuli,' ‘' Keith T. Butler,”® "' and Aron Walsh'"’
T T 1
MCI tzvec L- :lJTT- 1 R https://doi.org/10.1038/s41586-019-1335-8

200D

Literature word | unsupervised word embeddings capture latent

knowledge from materials science literature

e mb edd’ n g Vahe Tshitoyan"**, John Dagdelen'?, Leigh Weston!, Alexander Dunn"2, Zigin Rong!, Olga Kononova?, Kristin A. Persson"?,
Gerbrand Cederb?* & Anubhav Jain'*

https:/ /github.com/WMD-group /ElementEmbeddings



Element Embeddings

Toolkit to access and modify elemental and
compositional representations for machine learning

ElementEmbeddings

Made with Python m code style black ElementEmbeddings CI [passing
codecov 71% DOI 10.5281/zenodo.8117601 pypi 'vO.1.1 docs mkdocs material python 3.8 | 3.9 | 3.10

The Element Embeddings package provides high-level tools for analysing elemental embeddings
data. This primarily involves visualising the correlation between embedding schemes using
different statistical measures.

VipHLion Dr Anthony Onwuli
Machine learning approaches for materials informatics have become increasingly widespread.

Some of these involve the use of deep learning techniques where the representation of the .
elements is learned rather than specified by the user of the model. While an important goal of I-alle St em bed d | ng S
machine learning training is to minimise the chosen error function to make more accurate

predictions, it is also important for us material scientists to be able to interpret these models. As C I’YSTG L LM

such, we aim to evaluate and compare different atomic embedding schemes in a consistent
framework.

SkipSpecies
CGNF

Getting started
XenonPy

ElementEmbeddings's main feature, the Embedding class is accessible by importing the class.

|
https:/ /github.com/WMD-group /ElementEmbeddings




B. Structural Features



Learn from Crystallography

/ crystal systems, 14 Bravais lattices,
230 space groups, 103 prototype structures

Conventional description Ac
Unit cell (£)

a/ b/ C/ al B’ Y
Atom types (cA)

Sn, Ti, O... B \a >
Fractional coordinates (X) g b
(X1, Y1, Z1)--- 7

Problem for ML: conventional description lacks invariance™

*with respect to atomic permutation, unit cell rotations, and translations



Unit Cell Transformations

The same structure is described in each case

Two-atom orthorhombic unit cell Q ------ &) Q O

‘a b c¢c] [4 5 6 O®®

X1 Y1 Z1 0 0 0 ‘Q‘Q'Q‘
@ ®© @ @

Atomic permutation Crystal rotation  Unit cell translation

4 5 6 B 4 6 ] 4 5 6

L0 0 0 J L 0 0 0 . 05 O 0 J

-
ML models based on variant representations struggle to generalise



Structural Representations

Many structural descriptors have been developed

74 25 3920 3 3 3 3 3
25533117 7 7 2 3 2
39 313724 3 3 3 3 3
20 17 24 37 2 2 6 5 5
000000000
) |- -CEEREE - |
000000000
333333333

000000000
Structure Descriptor Learning model Property
\ J AN v \

* Coulomb Matrix (Rupp et al, 2012)
- mimics electrostatic interactions (q;q;/r;)

* Atom-Centered Symmetry Functions (Behler, 2011)
- site expansion of radial and angular terms

* Many Body Tensor Representation (Huo et al, 2017)
- distribution of local structural motifs

* Atomic Cluster Expansion (Drautz, 2019)

- high body-order expansion of atomic environments

|
Several are implemented in https://singroup.github.io /dscribe




Real Space Grid

Voxels (three-dimensional pixels) used
in computer graphics can describe a unit cell

White pixel

Grey pixel

Used in early materials ML, but not recommended for structure
EEEE——————————————————
Image courtesy of Taylor Sparks (University of Utah)



Pairwise Interatomic Distances

Coulomb matrix is a global descriptor that
mimics the electrostatic interaction between nuclei
0.5Z24 fori=j

: 7
M,L'(;OUIomb - ZZZJ f . .
Ri; or i # j

(36.9 33.7 55 3.1 55 5.5
33.7 735 40 82 38 3.8
\) 5.5 40 05 035 0.56 0.56
3.1 82 035 05 043 0.43

5.5 3.8 056 043 0.5 0.56
1 5.5 3.8 056 043 0.56 0.5

Sine matrix is a modification that accounts for periodicity

Implemented in https://singroup.github.io /dscribe



Invariant Structural Representations

Behler-Parrinello (2,3) PIPs ’En’f[)
ACE (n* . .. DeepMD (2,3) permutation
MTP En*; projection ‘G77p (2,3) invariant MBQ%)Q(Zz)?)
SNAP (4) atomic polynomials i (o)
imi sharp ST A hi Wasserstein
/blur permutations
smooth density (average) sorted
SOAP (3) correlation ) distances BoB (2)
FCHL (2,3,4) i _ permutations Sorted CM (2)
Wavelets (3) equivalent (histogram)
NICE (n*) rotations \ atom S
density products
: P ) centred SPRINB(n)
N distributions _sorte
Diffraction FP . molecular —_ eigenvalues
translatlons\ matrices Permutations
LODE (n) potential _ _ (sorting)
symmetrized . fields g‘kﬁ daetr?gi] internal A:m-h_near
local field translations transform fi Idty coordinates functions
& rotations Ao Z matrix
3D Voxel
symmetry . molecular
other relation permutations B0 graphs
. & rotations
family of features
named features (body order)
2,3,4: radial, angular, dihedrals !
n: n-body Cartesian

n*: complete n-body linear basis coordinates

Comprehensive review: F. Musil et al, Ch

em. Rev. 121, 9759 (2021)



Invariant Structural Representations

Atomic Cluster Expansion (ACE) provides @
systematic representation of atomic environments
through radial (R) and angular (Y) terms

Product basis B

Site basis function ¢(r) =R, Y™ forms a body-order
expansion

Permutation invariance A; = z ¢ (r) 8 i e

neighbours [ ®
Rotation (Q) invariance B; = fAi dQ OZ '\Z
@ B
Property = f(B, @) ACE |s.used in linear and |
weights deep learning models for materials

R. Drautz, Phys. Rev. B. 99, 014104 (2019); arXiv:2311.16326 (2023)



ML Powered Force Fields

Classical models are being complemented
by machine learning force fields (MLFF)

(, Reference d; — Regression == -
@ database(s) H\II E‘I’ (ulearningn) E — Z 8]' (q)
Energies and forces
(data labels)
M\ - l‘!‘ .‘% -
1 d“ 2 med M
P~ ," “.." .'- ." ~
® L . =
€W [ ] “Exact’, but SR
unknown PES
X (3N-dimensional) (] (descriptors)
Structural models Representation
(data locations) | of atomic structure *

Three start-of-the-art implementations based on equivariant
neural network regression are MACE, Allegro, and SevenNet

J. D. Morrow, J. L. A. Gardner and V. Deringer, J. Chem. Phys. 158, 121501 (2023)



Application to Superionic Crystals

Ability to describe spatial and temporal disorder
in the site occupcmcies of complex materials

O’b ’\
‘\ ‘.f (4 [ d [ d [ d
"'. ‘\ .“‘. p“qﬁ Fast Na ion diffusion in

'\ < ‘"‘ W-doped Na,;SbS,

AV ALY ﬁ",.'."l

27,648 atom supercells
2 fs timestep

48 ns (NPT) runs
Allegro model

@

A VOACWAC AN WA VA W AV N

>

https:/ /github.com /mir-group /allegro
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J. Klarbring and A. Walsh, Chem. Mater. 36, 9406 (2024)



Note on Pre-trained Force Fields

Beware of Goodhart's law: “When a measure
becomes a target, it ceases to be a good measure”

Model ® F1+ Acct MAEJ R?t+ Kgpme v Training Set Params Targets
eqV2 M 0.896 0.965 (0. 0.842 WiyE! 3.37M (102M) (OMat24+MPtrj) 86.6M EFSp
MatterSim-v1 0.947 | 0. 0.854 17M (MatterSim) 455M EFSg

(0] 3{>] 0.858 0.954 |0. (RN 1.732  3.25M (32.1M) (MPtrj+Alex) 25.2M EFSp
MACE-MPA-0 0.944 | 0. 0.837 3.37M (12M) (MPtri+sAlex)  9.06M  EFSg
GNoME 0.942 n/a 6M (89M) (GNoME) 16.2M  EFg
eqV2 SDeNS 1.665 146k (1.58M) (MPtrj) 31.2M  EFSp

SevenNet-13i5 OHSIIISES DI0A2 WMBK (1.58M) (MPtrj) 117M  EFSg

252M EFSp
842k  EFSg

ORB MPtrj : 0911 O. 0.752 ‘ 1725 146k (1.58M) (MPtrj)
0.719 0.893 0.046 0.75 146k (1.58M) (MPtrj)
5) 10.687 0.884 0.05 1074 [XVI W 146k (1.58M) (MPtrj) 156.3M  EFSg
0.668 0.867 0.055 0.698 146k (1.58M) (MPtrj) 469M EFSg
GNet 0.612 0.839 0.061 0.69 1717 146k (1.58M) (MPtrj) 413k EFSgM
M3GNet 0.576 0.802 0.072 0.588 1.412 62.8k (188k) (MPF) 228k EFSg

Evaluating the predictive power of force fields
for hypothetical compounds (w.r.t. DFT /PBE)

)

hitps:/ /matbench-discovery.materialsproject.org



Note on Pre-trained Force Fields

Beware of Goodhart's law: “When a measure
becomes a target, it ceases to be a good measure”

Model +~Rank Rankaggr. C tion deviation [eV/A )
ode an ank aggr. onservation deviation [eV/A] NVE Molecular Dynamlcs (CsSnls)
MACE-RFIM) 1 -106.5 | === ORB-V2 MLFF
MatterSim 2 16 0.013 === MACE-MP0O MLFF
M3GNet 3 19 0.026 _ aee
>
SCN(0C20) 2
€ > —107.5 A
2y
ORBv2 QC,
w —108.0 -
CHGNet ©
°
}—
SevenNet —108.5 A
RB
0 -109.0 A
MACE-OFF(M)
00 25 50 7.5 10.0 12,5 15.0 17.5 20.0
eqV2(OMat) Time (ps)
ALIGNN

Issues faced when forces
are not derivates of energy

EquiformerVv2(0C20)

EquiformerVv2(0C22)

https:/ /huggingface.co/spaces/atomind /mlip-arena
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Natural Language Processing (NLP)

Branch of Al that focuses on the interaction
between computers and human language

. Artificial intelligence

‘ Machine learning

O Natural Language Processing

O Deep learning

Image from https: //github.com /practical-nlp



Natural Language Processing (NLP)

Branch of Al that focuses on the interaction
between computers and human language

Hard Conversational agent
Question answering
Information extraction
Text classification
Easy Spell checking




Language Models

Large refers to the size and capacity of the model.
It must sample a literary combinatorial explosion

104 common words in English W
108 two-word combinations

10'2 three-word combinations

10'¢ four-word combinations

Language must be represented numerically
for machine learning models

Token: discrete scalar representation of word (or subword)

Embedding: continuous vector representation of tokens
-



Language Models

Predictive text

of [ shape J} strong Top words
| love materials because | they || are [ essential ranked by

their || like || beautiful probability

“Temperature” of the text choices

| love materials because they ignite a symphony
of vibrant colors, tantalizing textures, and

Sampling the
distribution

of probabilities

wondrous possibilities that dance in the realms
of imagination, transcending boundaries and

embracing the sheer beauty of creation itself. ) o
(“creativity”)

| love materials because they are essential.

-
Using GPT-4 via https: //github.com /hwchase 17 /langchain



Text to Tokens

Example: “ZnO is a wide bandgap semiconductor”

Tokens Characters Note that Zn is
O 35 split into two
tokens
Zn0 is a wide bandgap semiconductor (not ideal for
chemistry)
Token-IDs

[57,77,46, 374, 3094,
4097,43554, 39290, 87836]

The model looks up 768 dimensional embedding vectors
from the (contextual) embedding matrix

|
https:/ /platform.openai.com /tokenizer



Large Language Models

GPT = “Generative Pre-trained Transformer”
Generate Trained on a Deep learning
new content large dataset architecture

Transformer layers

Encode to a . .
analyse relationship between
vector

Decode to
words

vector components; generate
transformed vector

Key components of a transformer layer

Self-attention: smart focus on different parts of input

Feed-forward neural network: capture non-linear relationships

T. N. Brown et al, arXiv:2005.14165 (2020)



Large Language Models

Ongoing analysis into the physics of the transformer
architecture, e.g. rapid identification of strong
correlations and drift to a mean-field description

Transformer layer

{ )

i i

i i

v s
D | |
i i

i i

i i

Input i Multi-head LayerNorm Parallel neural LayerNorm ] Output
: self-attention networks (x V) '
Focus on Normalise Non-linear Normalise

important inputs for stability transformation for stability

B. Geshkovski et al, arXiv:2312.10794 (2023)



Large Language Models

Deep learning models trained to generate text

e.g. BERT (370M, 2018), GPT-4 (>10'2, 2023)

Recent models
include:

1000

GPT-3 (175B) —_

100 Megatron-Turing NLG (530B)

Llama-3
(Meta, 2024)

Megatron-LM (8.3B)
Turing-NLG (17.2B)

10

s Gemini
(Google, 2024)

GPT-4
(OpenAl, 2023)

“ELMo (94M) PCInGU'Z
0.01 .
2018 2019 2020 2021 2022 (Hquell 2023)

-
Image from https: / /towardsdatascience.com

-GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M)
0.1



Large Language Models

Essential ingredients of GPT and related models

Quantity Weight in Epochs elapsed when

. Dataset (tokens) training mix training for 300B tokens
D iverse Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
data Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34
Model Name Nparams Mayers @model Theads @head Batch Size Learning Rate
Deep GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10~4
o GPT-3 Large 760M 24 1536 16 9 0.5M 2.5 x 1074
| earnin g GPT-3 XL 1.3B 24 2048 24 128 M 2.0x 1074
GPT-32.7B 2.7B 32 2560 32 80 1M 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 M 1.2 x 1074
model GPT-3 13B 130B 40 5140 40 128 M 1.0 x 10~4
GPT-3 175B or “GPT-3” 175.0B 9 12288 96 128 3.2M 0.6 x 104
Setting NaturalQS WebQS TriviaQA
. ° RAG (Fine-tuned, Open-Domain) [LPP*20] 44.5 45.5 68.0
Vq | |d (o | |'| on T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5
T5-11B (Fine-tuned, Closed-Book) 34.5 374 50.1
GPT-3 Zero-Shot 14.6 14.4 64.3
on tas kS GPT-3 One-Shot 23.0 253 68.0
GPT-3 Few-Shot 29.9 415 71.2

|
T. N. Brown et al, arXiv:2005.14165 (2020)



Secret to Practical Success of LLMs

Patterns
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RLHF = Reinforcement Learning Human Feedback; Drawing from @anthrupad



Large Language Models

What are the potential drawbacks and
limitations of LLMs beyond computational cost?

—
* Training data, e.g. not up to date, strong bias

* Context tracking, e.g. limited short-term memory
* Hallucination, e.g. generate false information

* Ownership, e.g. fair use of training data

* Ethics, e.g. appear human generated

-
Several of these points are being addressed as models mature



LLMs for Materials

Many possibilities, e.g. read a textbook and ask
technical questions about the content

How can carbon nanotubes be
manufactured at scale?

Answer using these papers
>
Context for
retrieval |
>!- 7

“The Future of Chemistry is Language” A. D. White, Nat. Rev. Chem. 7, 457 (2023)



LLMs for Materials

Language models tailored to be fact-based with
clear context. Applied to one of my review papers

Question: Are temperature effects important for defects?

Temperature effects are indeed important for defects. Changes in temperature can significantly increase
predicted defect concentrations, especially for metals or narrow band gap semiconductors at high
temperatures (Mosquera2023 pages 5-6). Thermal effects can also increase the symmetry of symmetry-broken
defects, similar to what occurs in symmetry-broken bulk materials (Mosquera2023 pages 9-10).
Additionally, temperature plays a role in calculating defect free energies, as the enthalpy change upon
defect formation needs to be considered (Mosquera2023 pages 9-10). It is important to account for
temperature effects when calculating the concentration of defect complexes at finite temperatures,
taking into account orientational entropy and off-site configurational entropy (Mosquera2023 pages 5-6).
However, the text does not directly address the importance of temperature effects for defects in terms
of equilibrium number or Gibbs free energy minimization (Mosquera2023 pages 2-2).

References

(Mosquera2023): Mosquera-Lois, Irea, et al. "Imperfections are not 0 K: free energy of point defects in
crystals." Chem. Soc. Rev., vol. 52, no. 15, 2023, pp. 5456-5481. DOI: 10.1039/d3cs00432e.

|
https:/ /github.com /whitead /paper-qa



LLMs for Materials

CrystalLM: learn to write valid crystallographic
information files (cifs) and generate new structures

Generate a crystal structure from a composition *

Composition: K Pb 0 Z v | Spacegroup ¥ Generate!
optiona Op ,l‘

L. M. Antunes et al, Nature Comm. 15, 10570 (2024); https://crystallm.com



LLMs for Materials

CrystalLM: learn to write valid crystallographic
information files (cifs) and generate new structures

Training set 2.2 million cifs
Validation set 35,000 cifs

Test set 10,000 cifs

[E—

Custom tokens: space group symbols, element
symbols, numeric digits. 768 million training
tokens for a deep-learning model
with 25 million parameters

|
L. M. Antunes et al, Nature Comm. 15, 10570 (2024); https://crystallm.com



LLMs for Materials

Integrate a large language model into

scientific research workflows

t

Google . |  cooaie the A+g ent Physical world
Search API . hardware
Web searcher |« coocLe ~ BLFET I [-T 48 < ExPerivENT~ | Automation | <+ - coud et

Internet «—— srowse —* o _ ~ liquid handler .
PYTHON DOCUMENTATION — manual experimentation
re ~ Docs index

Docker o . retrieval and | Hardware API

container | 2% swbmisson — | Code execution Docs searcher |— . aiaion T gocumentation
Agent agreed to synthesize Agent refused to synthesize.

HO
OH ”,
7 ” O *
‘ ., O  lncked )L
o” mustard gas

4-hydroxybutanoic acid THC (name)
(SMILES string) (name)

D. A. Boiko et al, Nature 624, 570 (2023)



LLMs for Materials

Combine text and structural data for
multi-model models using contrastive learning

Rich representations for

text-to-compound generation

Graph Neural ‘
Network
g ———)

“L _}TLl bbb —

Composition — TG O C, C
LiMnO, -3 0
Text | [ o
General Text iy
Crystal structure | |Encoder| — TG, . . . [ g -
of LiMnO, with . . Denoising diffusion i R
orthorhombic —> . . . 1'/;'?'7, o ol
symmetry with Chemeleon ()
— LGN =A%)
—

Hyunsoo Park, A. Onwuli and A. Walsh, ChemRxiv (2024)



Sampling Materials Space

A high-dimensional space combining chemical

composition, structure, processing, properties

If a probability distribution is learned for a diverse set
of known materials, it may be used to target new compounds

H. Park, Z. Li and A. Walsh, Matter 7, 2358 (2024)



Autoencoder

Neural network compresses data into a deterministic
latent space and reconstructs it back to the original

\ Japooug /
9po2 JudleT]
/ Decoder \

High-dimensional Low(er)-dimensional High-dimensional
manifold of images latent space manifold of images

P. Baldi and K. Hornik (1989); Schematic adapted from hitps://synthesis.ai



Autoencoder
Lack of continuity and structure makes interpolated or
random points unlikely to map to meaningful data

\ Japooug /
9po2 JudleT]
/ Decoder \

High-dimensional Low(er)-dimensional High-dimensional
manifold of images latent space manifold of images

P. Baldi and K. Hornik (1989); Schematic adapted from hitps://synthesis.ai



Variational Autoencoder

Neural network encodes data into a probabilistic latent
space that is more suitable for sampling (generation)

r::n mean st. dev. =
e Q
~ 8_ —> M1, 01 3
o) [}
@ o)
/ / Latent : \_}
space :

\ Japoou] /
/ Decoder \

D. P. Kingma and M. Welling (2013); Schematic adapted from https: //synthesis.ai



Generative Artificial Intelligence

Create realistic data by sampling from
learned latent space (probability distributions)

Fy
|
|

=

QL |

—

@

a‘#

Q |

o

g

CD‘

Image decoder
Text-to-image generation

where encoders and

decoders are trained on

diverse data

/ Decoder \

L

Text encoder

“A frog in a > Transformer
o fo "
sci-fi world

'

All images were generated by DALL-E 3 (OpenAl)




Generative Artificial Intelligence

Growing range of generative architectures
can be tailored for scientific problems

Variational autoencoder (VAE) Denoising diffusion

Noise (forward)

o~ Z Decoder o' O7 T-1 T-2 1-3 T-4 5| eenene o
Learned
Input latent space Sampled  Noisy . Sampled
Denoise (reverse)
structure structure  structure structure
r Generative adversarial network (GAN) j Avutoregressive model T

c’1/n 0J2/n 0-’3/n G,A/n c).,S/n

27T 27T -, -, SN 27T
A ’ A ’ A ’ A ’ |

Noise Pass
vector Sampled or Fail Input Sequential prediction

structure string

o

Sampled
structure

H. Park, Z. Li and A. Walsh, Matter 7, 2358 (2024)



Application to Materials Design

GenAl models can be used in different ways, e.g.
* map from composition to crystal structure

* unguided sampling of a random compound

* guided sampling to specific properties

Li Li
© Known metastable

@® Known stable
C Generated metastable

@ Generated stable

Time =0

H. Park, A. Onwuli and A. Walsh, ChemRxiv (2024)

Cl




Chemeleon Example

As easy as “pip install chemeleon”

from chemeleon import Chemeleon

from chemeleon.visualize import Visualizer
from ase.io import write

import os

composition model = Chemeleon.load composition model()

n_samples
n_atoms =
prompt =

atoms list composition model.sample(prompt, n atoms, n samples)

visualizer = Visualizer(atoms list)
visualizer.view(index=0)

output_folder e on_structures"”
os.makedirs(output_folder, exist ok=True)

for i, atoms in enumerate(atoms list):
filename = os.path.join(output folder, f"structure {i+l}.cif")
write(filename, atoms)
print(f"Structure saved as {filename}")

-
https:/ /github.com /hspark1212 /chemeleon



Dive Deeper
Al content available from many sources, including

blogs, research papers, repositories, and textbooks

e.g. https://aronwalsh.github.io /MLforMaterials /Resources.html
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