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clear all 

close all

% N = number of states

% K(i,j) rate constant for the i --> j process

% rand is a subroutine that generates a uniformly

% distributed random number between (0,1)

N=6;

for i=1:N-1

 K(i,i+1)=10*rand;

 K(i+1,i)=10*rand;

end

% Add a stochastic "bottle neck" between states 2 and 3, by setting smaller rates here

K(2,3)=rand;

K(3,2)=rand;

for i=1:N

 K(i,i)=-sum(K(:,i));

end
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Kinetic network model: Linear chain with random rates
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Nodes of eigenvectors

Prinz, …, Noe, JCP 2011
Kube & Weber, JCP 2007

1st eigenvalue of K is 0, and all 

others are negative.

Right hand side 1st eigenvector – 

constant

Left hand side 1st eigenvector – 

equilibrium probability



% calculate equilibrium from spectral decomposition

[eigvec,eigval]=eig(K); % diagonalize K, eigvec stores the eigenvectors, eigval the eigenvalues

[dsorted,index]=sort(diag(eigval),'descend'); % sort the eigenvalues. dsorted stores the 

eigenvalues, index the corresponding indices

ind=index(1);

eq=eigvec(:,ind)/sum(eigvec(:,ind)) % normalized equilibrium probability. 

figure; hold on

x=linspace(0,1,10)

for i=1:N

plot(x,linspace(dsorted(i),dsorted(i),10))

end

ylabel('Eigenvalue','FontSize',18)

splitting=-(dsorted(2)-dsorted(3))/dsorted(2); % calculate the splitting based on a two state model

title(['Splitting of the eigenspectrum =',num2str(splitting)]);
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% Plot free energies

kB=0.0019872041; % Boltzmann constant (kcal/mol)

temp=298; % Temperature

energy=kB*temp*(-log(eq)); % calculate the energy

energy=energy-min(energy); % set zero level

% Now we plot the free energies

figure

hold on

xlabel('# State','FontSize',18)                   

ylabel(['\DeltaG (kcal/mol)'],'FontSize',18)

bar(energy,'r')

% plot(energy,'b-o','MarkerSize',10)

hold off
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[eigvec,eigval]=eig(K'); % diagonalize K, eigvec now stores the right eigenvectors

[dsorted,index]=sort(diag(eigval),'descend'); % sort the eigenvalues. 

dsorted % same eigenvalues as before

slowest_relrate=-dsorted(2) 

slow_vec=eigvec(:,index(2)); % Second right eigenvector corresponds to committor probability

figure

hold on

bar(slow_vec)

xlabel('# State','FontSize',18)

ylabel('Second eigenvector','FontSize',18)
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Spectral decomposition
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Simulation of the reaction probability density function

• Equivalent to the chemical master equation 

• Basic idea: when will the next reaction occur, what 
kind of reaction is it?

• Described by the reaction probability density function 
P(j)

• P(,j) d := prob. that, given the state (X1,…,XN) at time t,
the next reaction will occur in (t+,t++d) and will be an 
Rj reaction

• Also known as kinetic Monte Carlo

*D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81, 1977

Gillespie algorithm



• Goal: determine P(j)

• Pi()  prob. that no reaction occurs in (t, t+)

• Pi(+d) = Pi() [1-jKji d] 

• P(,j) d = Pi() Kji d

Gillespie algorithm
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• Generate a random pair (,j) according to

Gillespie algorithm
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s=1;

for k=1:N

T_add=1/K(s,s)*log(rand);

ss=find(histc(rand,pp(:,s)));

state(k)=s;

s=ss;

end

Gillespie algorithm



for j=1:N

pp(1,j)=0;

for i=1:N

  pp(i+1,j)=sum(p(1:i,j)); % The pp matrix stores cumulative transition probabilities

end

end

Gillespie algorithm



measured_eq=tcum/sum(tcum) % average time spent in each state / total time = 

measured euqilibrium probability (p_eq)

% Compare analytical and measured p_eq

figure

hold on

xlabel('# State','FontSize',18)                   

ylabel(['Equilibrium probability'],'FontSize',18)

bar(eq,'r')

bar(measured_eq,'b', 'BarWidth',0.4)

legend('exact','measured‘)

Gillespie algorithm



bins=100;

tim=linspace(0,t_traj(end),NN*bins); % We discretize the time

ind=1;

for i=1:NN*bins % we have NN transitions and we have divided the timescale in 

100*NN steps

while tim(i) > t_traj(ind)

ind=ind+1;

end

state(i)=s_traj(ind);

end

% plot the trajectory

figure

hold on

plot(state(1:NN*bins)) % We plot the whole trajectory. Lets zoom in!!!

xlabel('time','FontSize',18)

title('Trajectory','FontSize',24)

ylabel('# State','FontSize',18)

hold off

Gillespie algorithm: plot trajectories



Gillespie algorithm: plot trajectories



Gillespie algorithm: plot trajectories



help autocorr % built in function in Matlab

[ACF,lags,bounds] = autocorr(state,10000); % autocorrelation function 

of the state trajectories. Change the lagtime up to 10000

figure

plot(tim(1+lags),log(ACF),'LineWidth',2)

hold on

x=linspace(0,10,100);

plot(x,-slowest_relrate*x,'r-','LineWidth',2) % the mean of the log 

autocorrelation function is the second smaller eigenvalue

legend('autocorrelation function','slowest relaxation rate','FontSize',18)

xlabel('Time','FontSize',18)

ylabel(['ln(ACF)'],'FontSize',18

Gillespie algorithm: autocorrelation function



Gillespie algorithm: autocorrelation function



% Construct Markov chain

lagtime=1;

qspace=(1:N+1);

ncount(1:N+1)=histc(state(1:end-lagtime),qspace);

MM=zeros(N,N);

Nstep=size(state,2); % 

for i=1+lagtime:Nstep

MM(state(i-lagtime),state(i))=MM(state(i-

lagtime),state(i))+1/ncount(state(i-lagtime));

end

Gillespie algorithm: Transition probability matrix

msum=sum(MM');

for i=1:N

    if msum(i) > 0

        MM(i,:)=MM(i,:)/msum(i);

    else

        MM(i,:)=0;

    end

end

MM'

% this is equivalent with the matrix 

exponential of the rate matrix:

expm(K*tim(2))
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Gillespie algorithm: Transition probability matrix
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Some changes to play with the 

code
• Change the position of the stochastic bottleneck from 

between the 2nd and 3rd state.

– What happens to the second eigenvector?

– Where does it change sign?

• Change the number of states from 6 to a larger value.

– How well can we estimate the Markov matrix from our trajectories 

now?



How can you create a fully 

connected random rate matrix?
• Rewrite the code to create a random rate matrix where 

transitions are allowed to non-neighbour states.

• Check if it has a zero eigenvalue?

• Check if the eigenvalues are all real negative – is detailed 

balance condition satisfied?

( ) ( )=ij eq ji eqk P i k P j



Umbrella Sampling

• Run parallel 

simulations with 

harmonic constraints 

moving along the 

reaction coordinate

• Recover the unbiased 

free energy surface 

from combined data 

using e.g., WHAM
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DHAM: Dynamic Histogram Analysis 

Method

( )
( )

( ) ( )

1 1

Pr
k

ji
Nbin Nbin

T
k k

ji

i j

M
= =



   
L = ln M

ji

(k )( )
T

ji
( k )

j=1

Nbin

Õ
i=1

Nbin

Õ
k=1

NSim

Õ

( )

( ) ( ) ( )

( )

1=

= =


bin

k

ji jik k k

ji i ji ji N
k

li li

l

c M
M f c M

c M

Rosta, Hummer, JCTC, 2015

Biased Dynamical
Trajectories

Histogram
of Transitions

Markov Model

Free Energy 
& Kinetics



Applications using Umbrella Sampling

DHAM
DHAM



Applications for “downhill” unbiased non-
equilibrium trajectories
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