Statistically-Optimal Markov-
Chain Models in Biomoleular
Simulations

Edina Rosta

http://tinyurl.com/gsma2yo

mailto:edina.rosta@kcl.ac.uk

Kinetic network model: Linear chain with random rates

k K K K
1(12)2(23)3(34)”.(N-1N >N

k21 k32 k43 kN N-1
clear all
close all _ _
% N = number of states kij >0, VI1#]
% K(i,J) rate constant for the i --> j process N
% rand is a subroutine that generates a uniformly k. — _Z k. <0
% distributed random number between (0,1) i ij
N=6; J=1
for i=1:N-1 171
K(i,i+1)=10*rand;
K(i+1,))=10*rand;
end
% Add a stochastic "bottle neck™ between states 2 and 3, by setting smaller rates here
K(2,3)=rand;
K(3,2)=rand;
for i=1:N
g LDmsumGD) Detailed Balance: k;P, (i) =k;P, (j)

Nodes of eigenvectors

15t eigenvalue of K is 0, and all

others are negative.

Right hand side 1%t eigenvector —

constant

Left hand side 15t eigenvector —

equilibrium probability

Prinz, ..., Noe, JCP 2011
Kube & Weber, JCP 2007

Energy U(x)

Probability pu(x)

e

¥y

50 C€C 75 D 100

L":'r .

T'IJ' 3

[N
.
e

-

1

A

25

B

50 €C 75 D 100

Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn:/Ian’ /’2'1:O>/’122/11322//Z“N

% calculate equilibrium from spectral decomposition

[eigvec,eigval]=eig(K); % diagonalize K, eigvec stores the eigenvectors, eigval the eigenvalues
[dsorted,index]=sort(diag(eigval),'descend’); % sort the eigenvalues. dsorted stores the
eigenvalues, index the corresponding indices

ind=index(1);

eg=eigvec(:,ind)/sum(eigvec(:,ind)) % normalized equilibrium probability.

figure; hold on

x=linspace(0,1,10)

for i=1:N

plot(x,linspace(dsorted(i),dsorted(i),10))

end

ylabel('Eigenvalue','FontSize',18)

splitting=-(dsorted(2)-dsorted(3))/dsorted(2); % calculate the splitting based on a two state model
title(['Splitting of the eigenspectrum =',num2str(splitting)]);

Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn: an’ /11:0>/’Z’22/1322/1N

Two-state splitting of the eigenspectrum =4.3013

Eigenvalue

2L

44 1

I
-16 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn:/Ian’ /’2'1:O>/’122/11322//Z“N

% Plot free energies

kB=0.0019872041; % Boltzmann constant (kcal/mol)
temp=298; % Temperature
energy=kB*temp*(-log(eq)); % calculate the energy
energy=energy-min(energy); % set zero level

% Now we plot the free energies

figure

hold on

xlabel(‘# State','FontSize',18)

ylabel(['\DeltaG (kcal/mol)'],'FontSize',18)
bar(energy,'r')

% plot(energy,'b-0','MarkerSize',10)

hold off

Spectral decomposition

Stationary Equilibrium Distribution: N
N - - - . D P()=1
KP,=0; P ()>0, Vie{l..,N}; e
Eigenvectors and Eigenvalues:
KWn: an’ /11:0>ﬂ’222322ﬂ“N

0.6

~. 05

=

5 5

o —

a ©
o

0.3

€ x

2 O '

—

S o2 3

5

O

L g4

Spectral decomposition

Stationary Equilibrium Distribution: N

KP, =0; P(i)>0, Viel..N}; 2P0)=1
Eigenvectors and Eigenvalues:

Ky =4y, , L, =0>4L>24,>--2>1,

[eigvec,eigval]=eig(K"); % diagonalize K, eigvec now stores the right eigenvectors
[dsorted,index]=sort(diag(eigval),'descend’); % sort the eigenvalues.

dsorted % same eigenvalues as before

slowest_relrate=-dsorted(2)

slow_vec=eigvec(:,index(2)); % Second right eigenvector corresponds to committor probability
figure

hold on

bar(slow_vec)

xlabel(‘# State','FontSize',18)

ylabel('Second eigenvector','FontSize',18)

Spectral decomposition

Stationary Equilibrium Distribution:
KP,=0; P,(i)>0, Viefl..,N}; 2 Po(i) =1
Eigenvectors and Eigenvalues:
Ky =4y, , L, =0>4L>1,>--2>1,

=
(=]

o
o
T

o
S

- Single node

\

=] =]
[N Cad

Second eigenvector

=

i
=
=

State

Gillespie algorithm

Simulation of the reaction probability density function

Equivalent to the chemical master equation

Basic idea: when will the next reaction occur, what
kind of reaction Is it?

Described by the reaction probability density function
P(t.))

P(t,)) dt := prob. that, given the state (X,,...,X,) at time t,
the next reaction will occur in (t+t,t+t+dt) and will be an
R; reaction

Also known as kinetic Monte Carlo

*D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81, 1977

Gillespie algorithm

Goal: determine P(z,))
P:(t) prob. that no reaction occurs in (t, t+7)

Pi(t+dt) = Py(7) [1-2K;; d1]
di P(r)=->_K; =K,

jil

P(z,jJ) dt = Pi(7) K dt

P (T, j) = KijeK"T

P(t) o Z ijP (t) Z klj |(t)

(Jil) (Jil)

Gillespie algorithm

» Generate a random pair (t,J) according to

P(e,1)= - =R(D)R()
R (r)=e"
P ()= _K;“
__ In(rand,)
K.

Gillespie algorithm

s=1;

for k=1:N
T _add=1/K(s,s)*log(rand);
ss=find(histc(rand,pp(:,s)));
state(k)=s;
S=SS;

end

Gillespie algorithm

—%hicir
P(T,,Ll) = hﬁCﬁPO (T) = hﬁcﬁe =
— aﬁe—ﬂgf

a
= (a,e ") == | = P(0)- Pl

— Yy
when which
hext reaction
reaction occurs
occurs

for j=1:N
pp(1,))=0;
for i=1:N

pp(i+1,))=sum(p(1:i,))); % The pp matrix stores cumulative transition probabilities
end

end

Gillespie algorithm

measured_eqg=tcum/sum(tcum) % average time spent in each state / total time =
measured eugilibrium probability (p_eq)

% Compare analytical and measured p_eq
figure

hold on

xlabel('# State','FontSize',18)
ylabel(['Equilibrium probability'],'FontSize',18)
bar(eq,'r")

bar(measured_eq,'b’, '‘BarWidth',0.4)
legend(‘exact’,'measured*)

Gillespie algorithm: plot trajectories

bins=100;
tim=linspace(0,t_traj(end),NN*bins); % We discretize the time
ind=1;
for i=1:NN*bins % we have NN transitions and we have divided the timescale in
100*NN steps
while tim(i) > t_traj(ind)

ind=ind+1;
end
state(i)=s_traj(ind);
end
% plot the trajectory
figure
hold on

plot(state(1:NN*bins)) % We plot the whole trajectory. Lets zoom in!!!
xlabel(‘time','FontSize',18)

title("Trajectory','FontSize',24)

ylabel('# State','FontSize',18)

hold off

Gillespie algorithm: plot trajectories

Equilibrium probability

State

Gillespie algorithm: plot trajectories

Trajectory

5000

Trajectory - Zoom in!

time

10000

15000

Gillespie algorithm: autocorrelation function

The autocorrelation function of any time-dependent observable a(t)
projected on the N states of the system can be written as:

oo, ()] vl

N-1
(a(r)a(0))=X
=0
help autocorr % built in function in Matlab

[ACF,lags,bounds] = autocorr(state,10000); % autocorrelation function
of the state trajectories. Change the lagtime up to 10000

figure
plot(tim(1+lags),log(ACF),'LineWidth',2)
hold on

x=linspace(0,10,100);

plot(x,-slowest_relrate*x,'r-','LineWidth',2) % the mean of the log
autocorrelation function is the second smaller eigenvalue

legend(‘autocorrelation function','slowest relaxation rate','FontSize’,18)
xlabel('Time','FontSize',18)
ylabel(['In(ACF)"],'FontSize',18

Gillespie algorithm: autocorrelation function

The autocorrelation function of any time-dependent observable a(t)
projected on the N states of the system can be written as:

(00800 =5 S, o) ()] ol

=0

autocorrelation function
— | owest relaxation rate

In(ACF)

-0+

12+

_14 1 1 1 1 1 1 1
0 2 4 i} 8 10 12 14 16

Gillespie algorithm: Transition probability matrix

T -Dt

tot

L= 1] p(s(z, +Dr),Dz|s(z,),0)

lq

= T[Tt D100 = [T(e*)

=1 j=1 a

% Construct Markov chain

lagtime=1;

gspace=(1:N+1);
ncount(1:N+1)=histc(state(1:end-lagtime),qspace);

MM=zeros(N,N);
Nstep=size(state,2); %
for i=1+lagtime:Nstep

MM(state(i-lagtime),state(i))=MM(state(i-
lagtime),state(i))+1/ncount(state(i-lagtime));
end

'ala

p(j,Dt | i,O) @ NNji(Dt)

;Nh.(Dt)

msum=sum(MM");
for i=1:N
if msum(i) >0
MM(i,:)=MM(i,:)/msum(i);
else
MM(i,:)=0;
end
end
MM'
% this is equivalent with the matrix
exponential of the rate matrix:
expm(K*tim(2))

Gillespie algorithm: Transition probability matrix

T,,~Di
L= H p(s(t, +Dt),Dt|s(t,),0) pD111,0) 0= N, (Dr)
N N ZNli(Dt)
=TI [lp(.De 1,00 ‘H(ew). | =
=L j=1 a ‘ala
S| =
2 L 0085

State

Some changes to play with the
code

» Change the position of the stochastic bottleneck from
between the 2" and 3" state.
— What happens to the second eigenvector?
— Where does it change sign?

« Change the number of states from 6 to a larger value.

— How well can we estimate the Markov matrix from our trajectories
now?

How can you create a fully
connected random rate matrix?

» Rewrite the code to create a random rate matrix where
transitions are allowed to non-neighbour states.

» Check if it has a zero eigenvalue?

» Check if the eigenvalues are all real negative — is detailed
balance condition satisfied?

kij Peq (1) = kjiPeq(j)

Umbrella Sampling

* Run parallel
simulations with
harmonic constraints
moving along the
reaction coordinate

« Recover the unbiased
free energy surface
from combined data
using e.g., WHAM

Free Energy (kcal/mol)

£, (00) =Upu (0)+ K (608)

0 1 2

-2 -1
Reaction Coordinate (A)

DHAM: Dynamic Histogram Analysis

Method
e ﬁﬁ (M)T,.gk) Biased Dynamical
§ oC i . .
i a Trajectories
Ngym Nojn Nij 6 .
L=n0O0 O(<k>) Histogram
k=l el A of Transitions
(k)
M) = £OcOM ~ Ci'My,
Zricl(ik)M” Markov Model

Free Energy
& Kinetics

Rosta, Hummer, JCTC, 2015

Free Energy (kcal/mol)

Error (kcal/mol)

Probability Density

0.8
0.6
0.4
0.2

-0.2
-0.4

e
—

0.05

Applications using Umbrella Sampling

ha

0.4

0.6 0.8 1
Reaction Coordinate

Probability Density

Free Energy (kcal/mol)

Error (keal/mol)

10

—

<

1
f—

&
—

0.05

0 0.2 0.4 0.6 0.8 1

Reaction Coordinate

A T T T T T T T
—— WHAM
i —— DHAM
L — EXACT
B' + T T T T T T T
(': + T T T T T T T

Applications for “downhill” unbiased non-
equilibrium trajectories

Msim © 8
Sro
_ k=1
M ji. T Msim 0 6
2.0 2.
k=1 =
Nbin =
_ 3r
> Myp;=p E
E g 2
O
mo1r
0_
1t
_2 | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Reaction Coordinate

	Slide 1: Statistically-Optimal Markov-Chain Models in Biomoleular Simulations
	Slide 2
	Slide 3: Nodes of eigenvectors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Simulation of the reaction probability density function
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Some changes to play with the code
	Slide 24: How can you create a fully connected random rate matrix?
	Slide 25: Umbrella Sampling
	Slide 26: DHAM: Dynamic Histogram Analysis Method
	Slide 27: Applications using Umbrella Sampling
	Slide 28: Applications for “downhill” unbiased non-equilibrium trajectories

