
Statistically-Optimal Markov-

Chain Models in Biomoleular

Simulations

Edina Rosta

edina.rosta@ucl.ac.uk

http://tinyurl.com/gsma2yo

mailto:edina.rosta@kcl.ac.uk

clear all

close all

% N = number of states

% K(i,j) rate constant for the i --> j process

% rand is a subroutine that generates a uniformly

% distributed random number between (0,1)

N=6;

for i=1:N-1

 K(i,i+1)=10*rand;

 K(i+1,i)=10*rand;

end

% Add a stochastic "bottle neck" between states 2 and 3, by setting smaller rates here

K(2,3)=rand;

K(3,2)=rand;

for i=1:N

 K(i,i)=-sum(K(:,i));

end

12 23 34 1

21 32 43 1

1 2 3
N N

N N

k k k k

k k k k
N

−

−

⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯⎯→⎯⎯ ⎯⎯ ⎯⎯ ⎯⎯⎯

Kinetic network model: Linear chain with random rates

0, ijk i j  

1

0
=


= − 
N

ii ij

j
j i

k k

Detailed Balance: () ()=ij eq ji eqk P i k P j

Nodes of eigenvectors

Prinz, …, Noe, JCP 2011
Kube & Weber, JCP 2007

1st eigenvalue of K is 0, and all

others are negative.

Right hand side 1st eigenvector –

constant

Left hand side 1st eigenvector –

equilibrium probability

% calculate equilibrium from spectral decomposition

[eigvec,eigval]=eig(K); % diagonalize K, eigvec stores the eigenvectors, eigval the eigenvalues

[dsorted,index]=sort(diag(eigval),'descend'); % sort the eigenvalues. dsorted stores the

eigenvalues, index the corresponding indices

ind=index(1);

eq=eigvec(:,ind)/sum(eigvec(:,ind)) % normalized equilibrium probability.

figure; hold on

x=linspace(0,1,10)

for i=1:N

plot(x,linspace(dsorted(i),dsorted(i),10))

end

ylabel('Eigenvalue','FontSize',18)

splitting=-(dsorted(2)-dsorted(3))/dsorted(2); % calculate the splitting based on a two state model

title(['Splitting of the eigenspectrum =',num2str(splitting)]);

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

% Plot free energies

kB=0.0019872041; % Boltzmann constant (kcal/mol)

temp=298; % Temperature

energy=kB*temp*(-log(eq)); % calculate the energy

energy=energy-min(energy); % set zero level

% Now we plot the free energies

figure

hold on

xlabel('# State','FontSize',18)

ylabel(['\DeltaG (kcal/mol)'],'FontSize',18)

bar(energy,'r')

% plot(energy,'b-o','MarkerSize',10)

hold off

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

[eigvec,eigval]=eig(K'); % diagonalize K, eigvec now stores the right eigenvectors

[dsorted,index]=sort(diag(eigval),'descend'); % sort the eigenvalues.

dsorted % same eigenvalues as before

slowest_relrate=-dsorted(2)

slow_vec=eigvec(:,index(2)); % Second right eigenvector corresponds to committor probability

figure

hold on

bar(slow_vec)

xlabel('# State','FontSize',18)

ylabel('Second eigenvector','FontSize',18)

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

Spectral decomposition

Stationary Equilibrium Distribution:

Eigenvectors and Eigenvalues:
1

() 1
N

eq

i

P i
=

= () 0, 1,..., ; eqP i i N  0 ;K P eq 

1 2 30K = , n n n N     =    

Single node

Simulation of the reaction probability density function

• Equivalent to the chemical master equation

• Basic idea: when will the next reaction occur, what
kind of reaction is it?

• Described by the reaction probability density function
P(j)

• P(,j) d := prob. that, given the state (X1,…,XN) at time t,
the next reaction will occur in (t+,t++d) and will be an
Rj reaction

• Also known as kinetic Monte Carlo

*D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81, 1977

Gillespie algorithm

• Goal: determine P(j)

• Pi() prob. that no reaction occurs in (t, t+)

• Pi(+d) = Pi() [1-jKji d]

• P(,j) d = Pi() Kji d

Gillespie algorithm

1 1
() ()

() () ()
= =
 

= − 
N N

i j i

j j
j i

ji

j

ij

i

P t P t kk P t

()
 

= − =i ij ii

j i

d
P K K

d

(),
 = iiK

i ijP j K e

• Generate a random pair (,j) according to

Gillespie algorithm

() () ()

()

()

()1

,

ln

ii

ii

ji K

i i

ii

K

i

ji

i

ii

ii

K
P j e P P j

K

P e

K
P j

K

rand

K





 





= =
−

=

=
−

=
−

s=1;

for k=1:N

T_add=1/K(s,s)*log(rand);

ss=find(histc(rand,pp(:,s)));

state(k)=s;

s=ss;

end

Gillespie algorithm

for j=1:N

pp(1,j)=0;

for i=1:N

 pp(i+1,j)=sum(p(1:i,j)); % The pp matrix stores cumulative transition probabilities

end

end

Gillespie algorithm

measured_eq=tcum/sum(tcum) % average time spent in each state / total time =

measured euqilibrium probability (p_eq)

% Compare analytical and measured p_eq

figure

hold on

xlabel('# State','FontSize',18)

ylabel(['Equilibrium probability'],'FontSize',18)

bar(eq,'r')

bar(measured_eq,'b', 'BarWidth',0.4)

legend('exact','measured‘)

Gillespie algorithm

bins=100;

tim=linspace(0,t_traj(end),NN*bins); % We discretize the time

ind=1;

for i=1:NN*bins % we have NN transitions and we have divided the timescale in

100*NN steps

while tim(i) > t_traj(ind)

ind=ind+1;

end

state(i)=s_traj(ind);

end

% plot the trajectory

figure

hold on

plot(state(1:NN*bins)) % We plot the whole trajectory. Lets zoom in!!!

xlabel('time','FontSize',18)

title('Trajectory','FontSize',24)

ylabel('# State','FontSize',18)

hold off

Gillespie algorithm: plot trajectories

Gillespie algorithm: plot trajectories

Gillespie algorithm: plot trajectories

help autocorr % built in function in Matlab

[ACF,lags,bounds] = autocorr(state,10000); % autocorrelation function

of the state trajectories. Change the lagtime up to 10000

figure

plot(tim(1+lags),log(ACF),'LineWidth',2)

hold on

x=linspace(0,10,100);

plot(x,-slowest_relrate*x,'r-','LineWidth',2) % the mean of the log

autocorrelation function is the second smaller eigenvalue

legend('autocorrelation function','slowest relaxation rate','FontSize',18)

xlabel('Time','FontSize',18)

ylabel(['ln(ACF)'],'FontSize',18

Gillespie algorithm: autocorrelation function

Gillespie algorithm: autocorrelation function

% Construct Markov chain

lagtime=1;

qspace=(1:N+1);

ncount(1:N+1)=histc(state(1:end-lagtime),qspace);

MM=zeros(N,N);

Nstep=size(state,2); %

for i=1+lagtime:Nstep

MM(state(i-lagtime),state(i))=MM(state(i-

lagtime),state(i))+1/ncount(state(i-lagtime));

end

Gillespie algorithm: Transition probability matrix

msum=sum(MM');

for i=1:N

 if msum(i) > 0

 MM(i,:)=MM(i,:)/msum(i);

 else

 MM(i,:)=0;

 end

end

MM'

% this is equivalent with the matrix

exponential of the rate matrix:

expm(K*tim(2))

p j,Dt | i,0() @
N

ji
Dt()

N
li

Dt()
l=1

N

å

L = p(s(t
a

+ Dt),Dt | s(t
a

),0)
t
a

T
tot

-Dt

Õ

 = [p(j,Dt | i,0)]
N

ji

j=1

N

Õ
i=1

N

Õ = eDt×K()
i
a

j
aa

Õ

Gillespie algorithm: Transition probability matrix

p j,Dt | i,0() @
N

ji
Dt()

N
li

Dt()
l=1

N

å

L = p(s(t
a

+ Dt),Dt | s(t
a

),0)
t
a

T
tot

-Dt

Õ

 = [p(j,Dt | i,0)]
N

ji

j=1

N

Õ
i=1

N

Õ = eDt×K()
i
a

j
aa

Õ

Some changes to play with the

code
• Change the position of the stochastic bottleneck from

between the 2nd and 3rd state.

– What happens to the second eigenvector?

– Where does it change sign?

• Change the number of states from 6 to a larger value.

– How well can we estimate the Markov matrix from our trajectories

now?

How can you create a fully

connected random rate matrix?
• Rewrite the code to create a random rate matrix where

transitions are allowed to non-neighbour states.

• Check if it has a zero eigenvalue?

• Check if the eigenvalues are all real negative – is detailed

balance condition satisfied?

() ()=ij eq ji eqk P i k P j

Umbrella Sampling

• Run parallel

simulations with

harmonic constraints

moving along the

reaction coordinate

• Recover the unbiased

free energy surface

from combined data

using e.g., WHAM

() () ()
21

2
pot A i A ii A U q kE q  = + −

DHAM: Dynamic Histogram Analysis

Method

()
()

() ()

1 1

Pr
k

ji
Nbin Nbin

T
k k

ji

i j

M
= =



L = ln M

ji

(k)()
T

ji
(k)

j=1

Nbin

Õ
i=1

Nbin

Õ
k=1

NSim

Õ

()

() () ()

()

1=

= =


bin

k

ji jik k k

ji i ji ji N
k

li li

l

c M
M f c M

c M

Rosta, Hummer, JCTC, 2015

Biased Dynamical
Trajectories

Histogram
of Transitions

Markov Model

Free Energy
& Kinetics

Applications using Umbrella Sampling

DHAM
DHAM

Applications for “downhill” unbiased non-
equilibrium trajectories

()

1

()

1

Msim
k

ji

k
ji Msim

k

i

k

T

M

n

=

=

=




1

Nbin

ij j i

j

M p p
=

=

DHAM

	Slide 1: Statistically-Optimal Markov-Chain Models in Biomoleular Simulations
	Slide 2
	Slide 3: Nodes of eigenvectors
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Simulation of the reaction probability density function
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Some changes to play with the code
	Slide 24: How can you create a fully connected random rate matrix?
	Slide 25: Umbrella Sampling
	Slide 26: DHAM: Dynamic Histogram Analysis Method
	Slide 27: Applications using Umbrella Sampling
	Slide 28: Applications for “downhill” unbiased non-equilibrium trajectories

