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Kinetic network model: Linear chain with random rates
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clear all
close all _ _
% N = number of states kij >0, VI1# ]
% K(i,J) rate constant for the i --> j process N
% rand is a subroutine that generates a uniformly k. — _Z k. <0
% distributed random number between (0,1) i ij
N=6; J=1
for i=1:N-1 171
K(i,i+1)=10*rand;
K(i+1,))=10*rand;
end
% Add a stochastic "bottle neck™ between states 2 and 3, by setting smaller rates here
K(2,3)=rand;
K(3,2)=rand;
for i=1:N
g LDmsumGD) Detailed Balance: k;P, (i) =k;P, (j)



Nodes of eigenvectors

15t eigenvalue of K is 0, and all

others are negative.

Right hand side 1%t eigenvector —

constant

Left hand side 15t eigenvector —

equilibrium probability

Prinz, ..., Noe, JCP 2011
Kube & Weber, JCP 2007

Energy U(x)

Probability pu(x)
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Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn:/Ian’ /’2'1:O>/’122/11322//Z“N

% calculate equilibrium from spectral decomposition

[eigvec,eigval]=eig(K); % diagonalize K, eigvec stores the eigenvectors, eigval the eigenvalues
[dsorted,index]=sort(diag(eigval),'descend’); % sort the eigenvalues. dsorted stores the
eigenvalues, index the corresponding indices

ind=index(1);

eg=eigvec(:,ind)/sum(eigvec(:,ind)) % normalized equilibrium probability.

figure; hold on

x=linspace(0,1,10)

for i=1:N

plot(x,linspace(dsorted(i),dsorted(i),10))

end

ylabel('Eigenvalue','FontSize',18)

splitting=-(dsorted(2)-dsorted(3))/dsorted(2); % calculate the splitting based on a two state model
title(['Splitting of the eigenspectrum =',num2str(splitting)]);



Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn: an’ /11:0>/’Z’22/1322/1N

Two-state splitting of the eigenspectrum =4.3013
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Spectral decomposition

Stationary Equilibrium Distribution: N
P . - YR.()=1
K Peq_O , P,(i)>0, Vle{l,...,N}, e
Eigenvectors and Eigenvalues:
KWn:/Ian’ /’2'1:O>/’122/11322//Z“N

% Plot free energies

kB=0.0019872041; % Boltzmann constant (kcal/mol)
temp=298; % Temperature
energy=kB*temp*(-log(eq)); % calculate the energy
energy=energy-min(energy); % set zero level

% Now we plot the free energies

figure

hold on

xlabel(‘# State','FontSize',18)

ylabel(['\DeltaG (kcal/mol)'],'FontSize',18)
bar(energy,'r')

% plot(energy,'b-0','MarkerSize',10)

hold off



Spectral decomposition

Stationary Equilibrium Distribution: N
N - - - . D P()=1
KP,=0; P ()>0, Vie{l..,N}; e
Eigenvectors and Eigenvalues:
KWn: an’ /11:0>ﬂ’222322ﬂ“N
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Spectral decomposition

Stationary Equilibrium Distribution: N

KP, =0; P(i)>0, Viel..N}; 2P0)=1
Eigenvectors and Eigenvalues:

Ky =4y, , L, =0>4L>24,>--2>1,

[eigvec,eigval]=eig(K"); % diagonalize K, eigvec now stores the right eigenvectors
[dsorted,index]=sort(diag(eigval),'descend’); % sort the eigenvalues.

dsorted % same eigenvalues as before

slowest_relrate=-dsorted(2)

slow_vec=eigvec(:,index(2)); % Second right eigenvector corresponds to committor probability
figure

hold on

bar(slow_vec)

xlabel(‘# State','FontSize',18)

ylabel('Second eigenvector','FontSize',18)



Spectral decomposition

Stationary Equilibrium Distribution:
KP,=0; P,(i)>0, Viefl..,N}; 2 Po(i) =1
Eigenvectors and Eigenvalues:
Ky =4y, , L, =0>4L>1,>--2>1,
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Gillespie algorithm

Simulation of the reaction probability density function

Equivalent to the chemical master equation

Basic idea: when will the next reaction occur, what
kind of reaction Is it?

Described by the reaction probability density function
P(t.))

P(t,)) dt := prob. that, given the state (X,,...,X,) at time t,
the next reaction will occur in (t+t,t+t+dt) and will be an
R; reaction

Also known as kinetic Monte Carlo

*D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81, 1977



Gillespie algorithm

Goal: determine P(z,))
P:(t) prob. that no reaction occurs in (t, t+7)

Pi(t+dt) = Py(7) [1-2K;; d1]
di P(r)=->_K; =K,

jil

P(z,jJ) dt = Pi(7) K dt

P (T, j) = KijeK"T

P(t) o Z ijP (t) Z klj |(t)

(Jil) (Jil)



Gillespie algorithm

» Generate a random pair (t,J) according to

P(e,1)= - =R(D)R()
R (r)=e"
P ()= _K;“
__ In(rand, )
K.



Gillespie algorithm

s=1;

for k=1:N
T _add=1/K(s,s)*log(rand);
ss=find(histc(rand,pp(:,s)));
state(k)=s;
S=SS;

end



Gillespie algorithm

—%hicir
P(T,,Ll) = hﬁCﬁPO (T) = hﬁcﬁe =
— aﬁe—ﬂgf

a
= (a,e ") == | = P(0)- Pl

— Yy
when which
hext reaction
reaction occurs
occurs

for j=1:N
pp(1,))=0;
for i=1:N

pp(i+1,))=sum(p(1:i,))); % The pp matrix stores cumulative transition probabilities
end

end



Gillespie algorithm

measured_eqg=tcum/sum(tcum) % average time spent in each state / total time =
measured eugilibrium probability (p_eq)

% Compare analytical and measured p_eq
figure

hold on

xlabel('# State','FontSize',18)
ylabel(['Equilibrium probability'],'FontSize',18)
bar(eq,'r")

bar(measured_eq,'b’, '‘BarWidth',0.4)
legend(‘exact’,'measured*)



Gillespie algorithm: plot trajectories

bins=100;
tim=linspace(0,t_traj(end),NN*bins); % We discretize the time
ind=1;
for i=1:NN*bins % we have NN transitions and we have divided the timescale in
100*NN steps
while tim(i) > t_traj(ind)

ind=ind+1;
end
state(i)=s_traj(ind);
end
% plot the trajectory
figure
hold on

plot(state(1:NN*bins)) % We plot the whole trajectory. Lets zoom in!!!
xlabel(‘time','FontSize',18)

title("Trajectory','FontSize',24)

ylabel('# State','FontSize',18)

hold off



Gillespie algorithm: plot trajectories

Equilibrium probability

# State



Gillespie algorithm: plot trajectories

Trajectory

5000

Trajectory - Zoom in!

time

10000

15000



Gillespie algorithm: autocorrelation function

The autocorrelation function of any time-dependent observable a(t)
projected on the N states of the system can be written as:

oo, ()] vl

N-1
(a(r)a(0))=X
=0
help autocorr % built in function in Matlab

[ACF,lags,bounds] = autocorr(state,10000); % autocorrelation function
of the state trajectories. Change the lagtime up to 10000

figure
plot(tim(1+lags),log(ACF),'LineWidth',2)
hold on

x=linspace(0,10,100);

plot(x,-slowest_relrate*x,'r-','LineWidth',2) % the mean of the log
autocorrelation function is the second smaller eigenvalue

legend(‘autocorrelation function','slowest relaxation rate','FontSize’,18)
xlabel('Time','FontSize',18)
ylabel(['In(ACF)"],'FontSize',18



Gillespie algorithm: autocorrelation function

The autocorrelation function of any time-dependent observable a(t)
projected on the N states of the system can be written as:

(00800 =5 S, o) ()] ol

=0

autocorrelation function
— | owest relaxation rate

In(ACF)
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Gillespie algorithm: Transition probability matrix

T -Dt

tot

L= 1] p(s(z, +Dr),Dz|s(z,),0)

lq

= T[Tt D100 = [T(e*)

=1 j=1 a

% Construct Markov chain

lagtime=1;

gspace=(1:N+1);
ncount(1:N+1)=histc(state(1:end-lagtime),qspace);

MM=zeros(N,N);
Nstep=size(state,2); %
for i=1+lagtime:Nstep

MM(state(i-lagtime),state(i))=MM(state(i-
lagtime),state(i))+1/ncount(state(i-lagtime));
end

'ala

p(j,Dt | i,O) @ NNji(Dt)

;Nh.(Dt)

msum=sum(MM");
for i=1:N
if msum(i) >0
MM(i,:)=MM(i,:)/msum(i);
else
MM(i,:)=0;
end
end
MM'
% this is equivalent with the matrix
exponential of the rate matrix:
expm(K*tim(2))



Gillespie algorithm: Transition probability matrix

T,,~Di
L= H p(s(t, +Dt),Dt|s(t,),0) pD111,0) 0= N, (Dr)
N N ZNli(Dt)
=TI [lp(.De 1,00 ‘H(ew). | =
=L j=1 a ‘ala
S| =
2 L 0085

# State



Some changes to play with the
code

» Change the position of the stochastic bottleneck from
between the 2" and 3" state.
— What happens to the second eigenvector?
— Where does it change sign?

« Change the number of states from 6 to a larger value.

— How well can we estimate the Markov matrix from our trajectories
now?



How can you create a fully
connected random rate matrix?

» Rewrite the code to create a random rate matrix where
transitions are allowed to non-neighbour states.

» Check if it has a zero eigenvalue?

» Check if the eigenvalues are all real negative — is detailed
balance condition satisfied?

kij Peq (1) = kjiPeq(j)



Umbrella Sampling

* Run parallel
simulations with
harmonic constraints
moving along the
reaction coordinate

« Recover the unbiased
free energy surface
from combined data
using e.g., WHAM

Free Energy (kcal/mol)

£, (00) =Upu (0)+ K (608 )

0 1 2
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Reaction Coordinate (A)



DHAM: Dynamic Histogram Analysis

Method
e ﬁﬁ (M )T,.gk) Biased Dynamical
§ oC i . .
i a Trajectories
Ngym Nojn Nij 6 .
L=n0O0 O( <k>) Histogram
k=l el A of Transitions
(k)
M) = £OcOM ~ Ci'My,
Zricl(ik)M” Markov Model

Free Energy
& Kinetics

Rosta, Hummer, JCTC, 2015



Free Energy (kcal/mol)

Error (kcal/mol)

Probability Density
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Applications using Umbrella Sampling
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Applications for “downhill” unbiased non-
equilibrium trajectories
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