



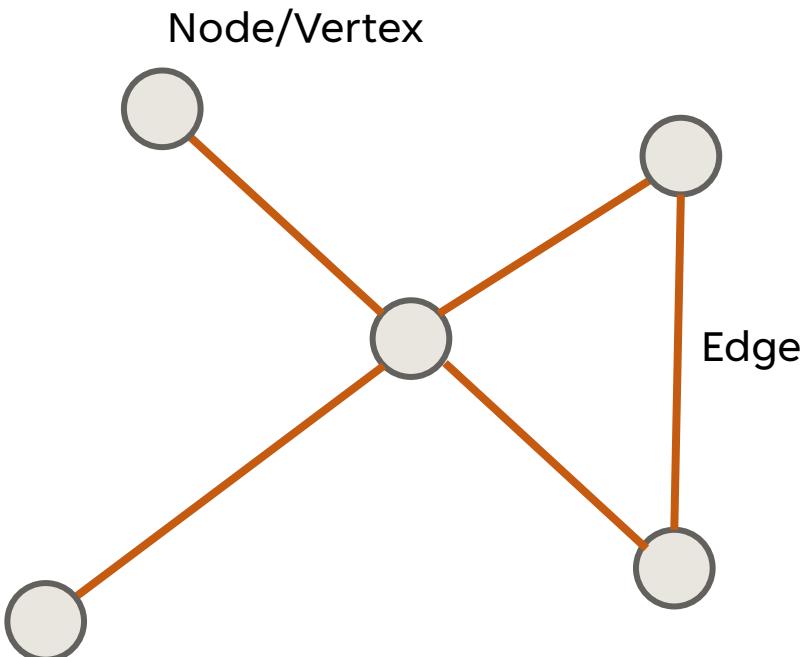
# INTRODUCTION TO GRAPH NEURAL NETWORKS

Keith Butler

## BEFORE WE START

Let's open up the exercise notebook in colab and put the dependencies loading in the background.

# WHAT IS A GRAPH?

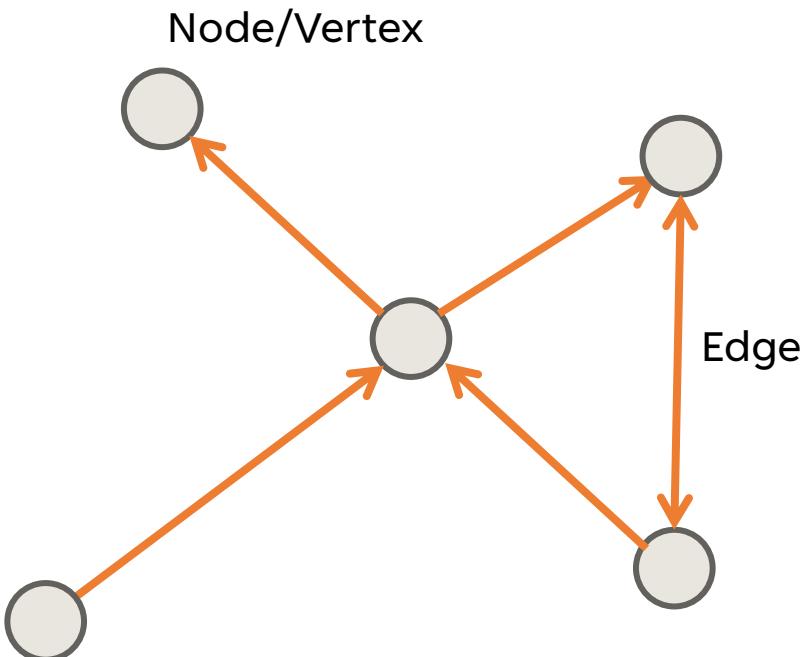


Graphs encode **relations** between **entities**.

**Nodes** have information about the entity.

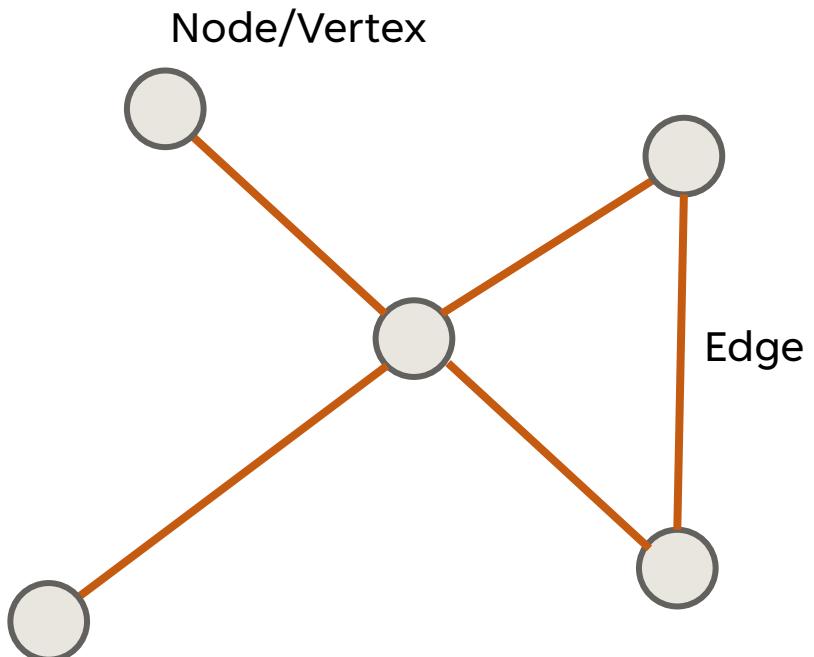
**Edges** connect nodes.

# WHAT IS A GRAPH?



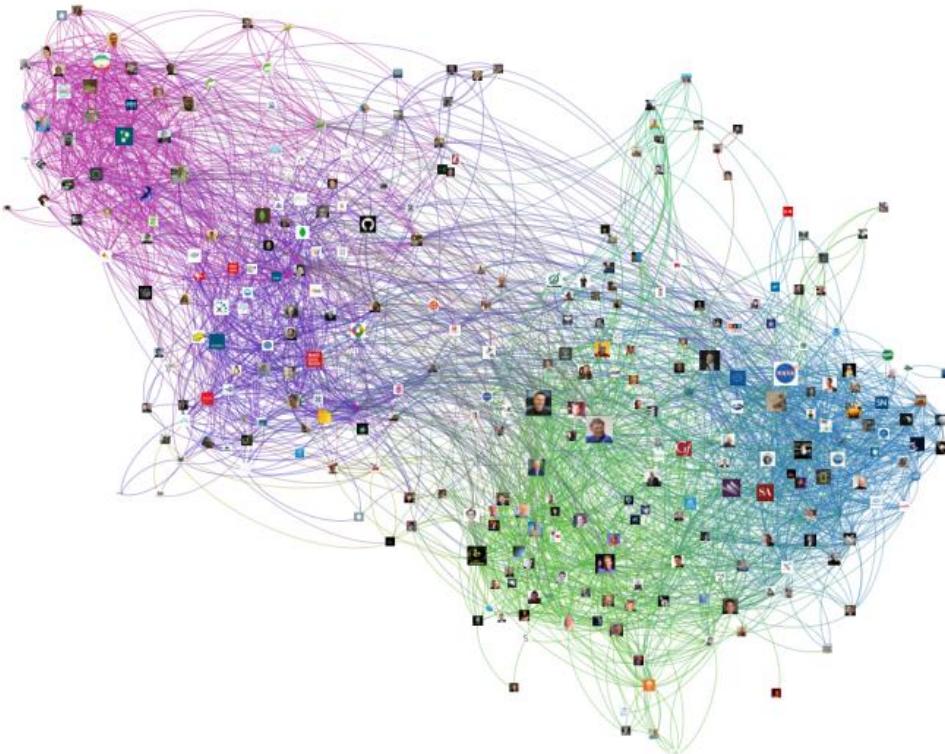
Edges can be **directed** or **undirected**.  
Meaning that **information** can flow in either or both directions.

# WHAT IS A GRAPH?

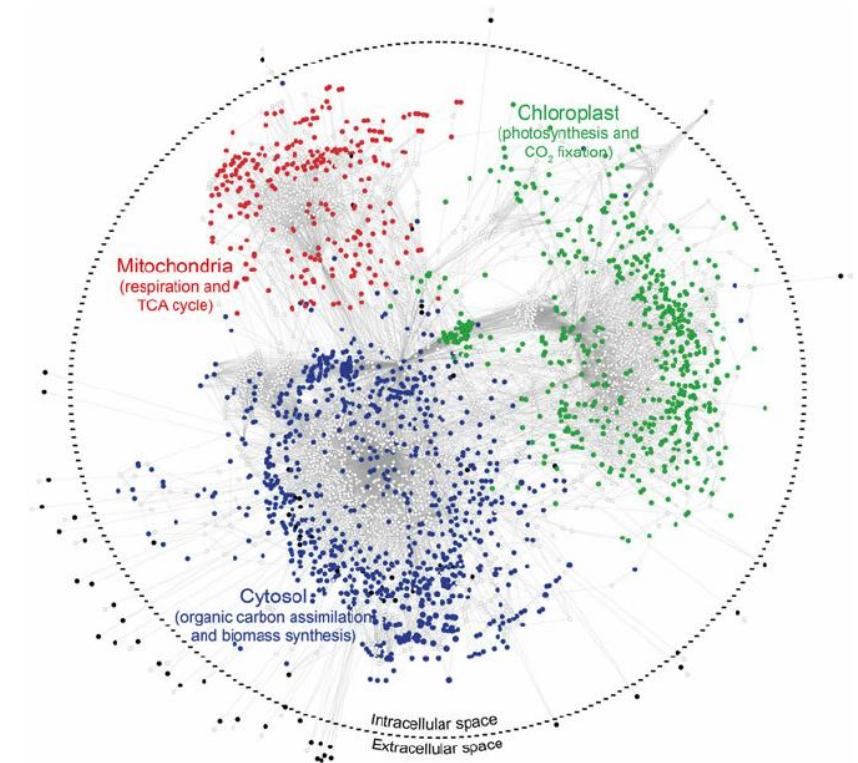


Information is stored in both nodes and edges.  
Information is stored as embeddings.

# WHERE DO WE FIND/USE GRAPHS?

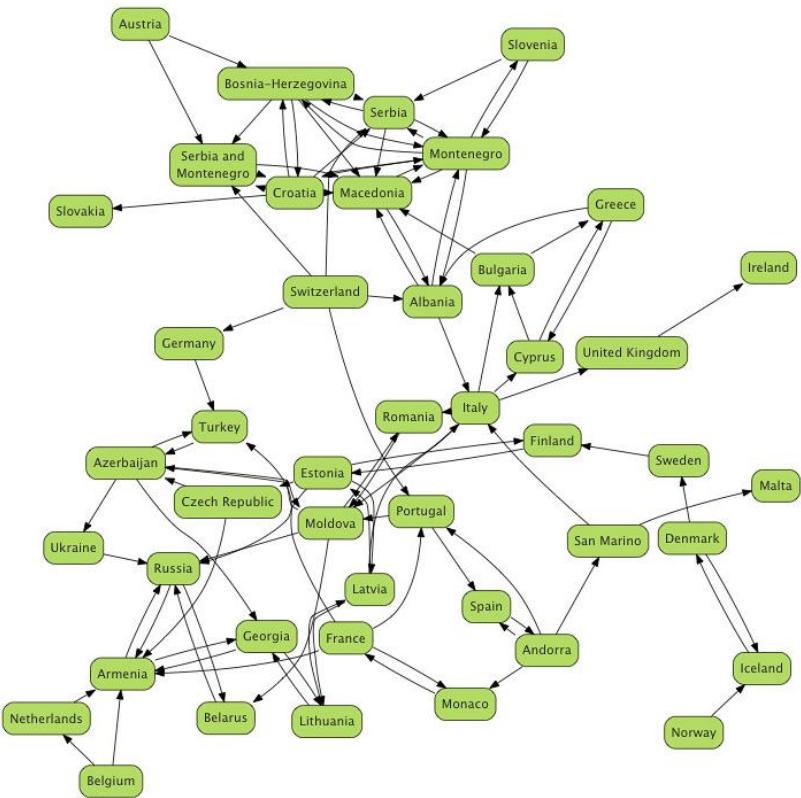


Social networks. >1B nodes; >10B edges

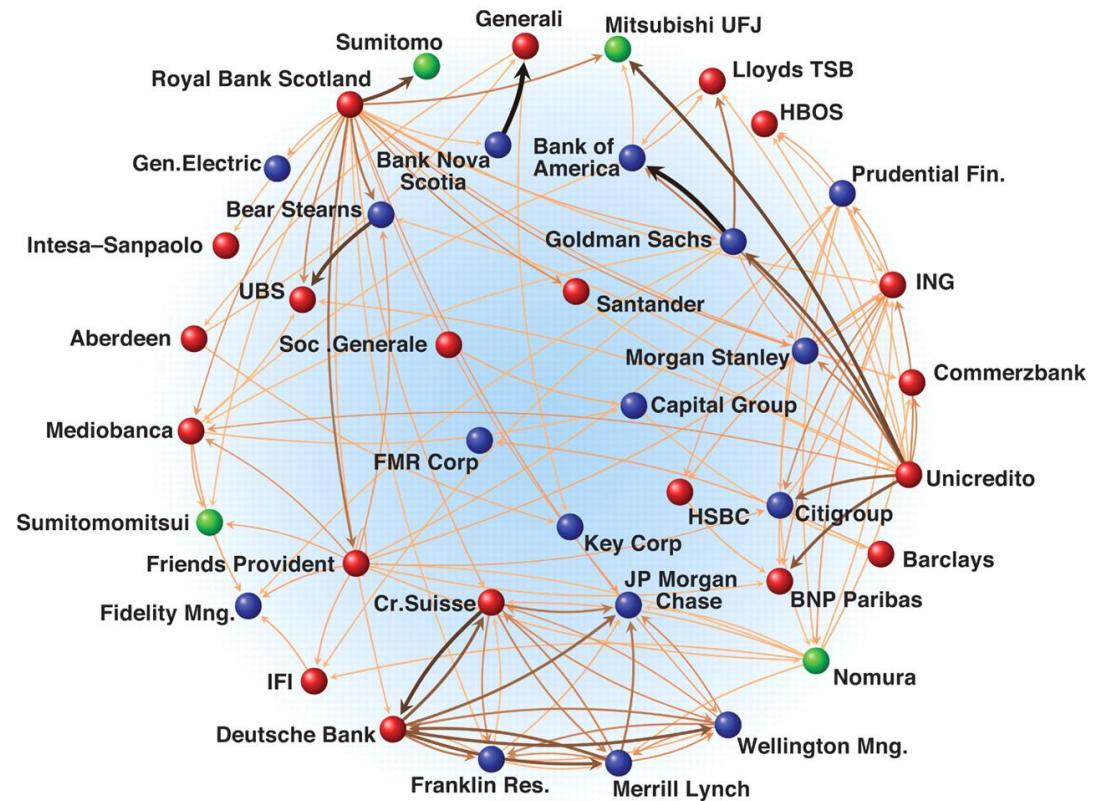


Biological systems

# WHERE DO WE FIND/USE GRAPHS?



# Eurovision song contest

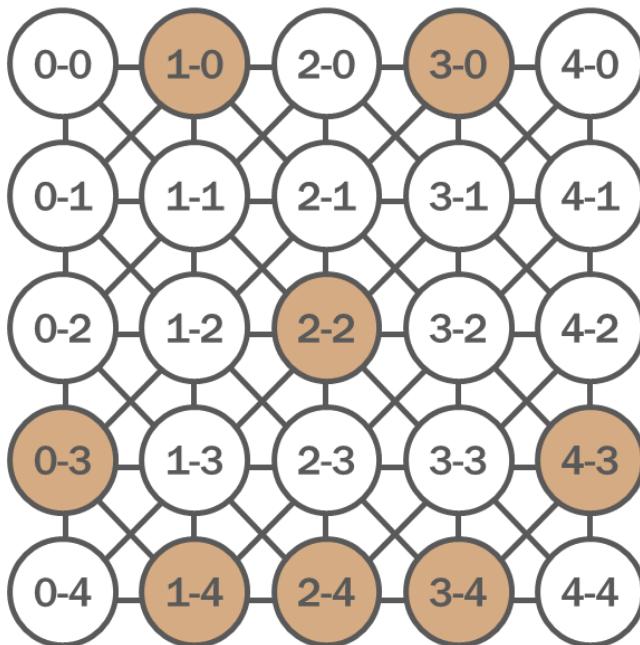


## Economics

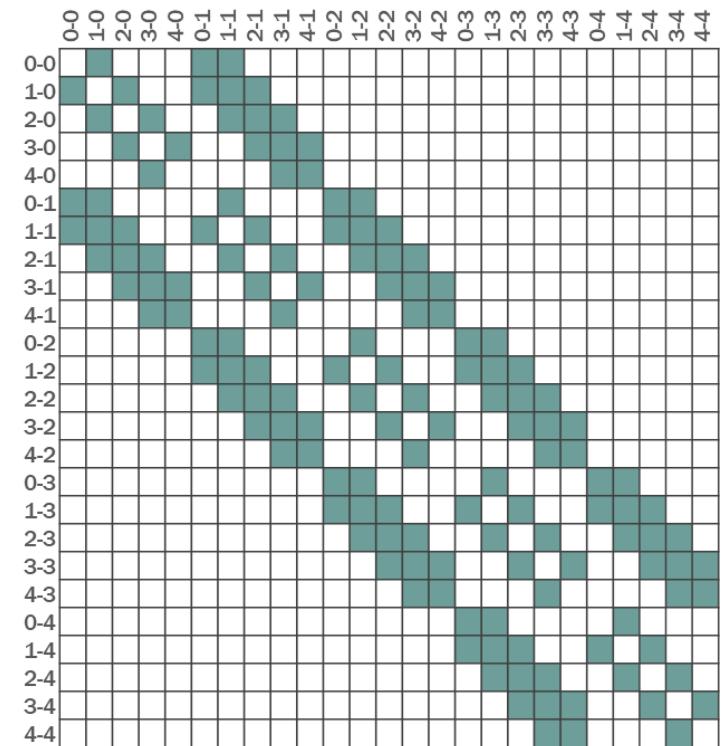
# AN IMAGE IS A GRAPH WITH REGULAR STRUCTURE

|     |     |     |     |     |
|-----|-----|-----|-----|-----|
| 0-0 | 1-0 | 2-0 | 3-0 | 4-0 |
| 0-1 | 1-1 | 2-1 | 3-1 | 4-1 |
| 0-2 | 1-2 | 2-2 | 3-2 | 4-2 |
| 0-3 | 1-3 | 2-3 | 3-3 | 4-3 |
| 0-4 | 1-4 | 2-4 | 3-4 | 4-4 |

Image pixels

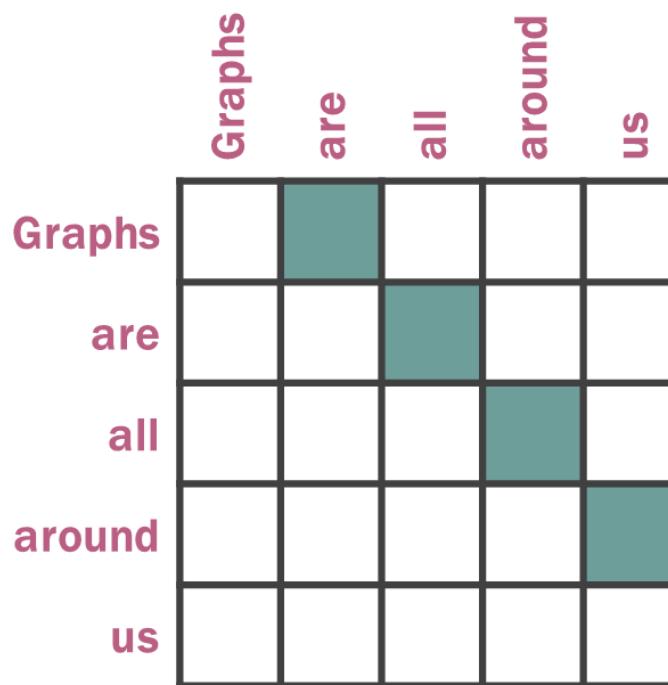


Graph structure

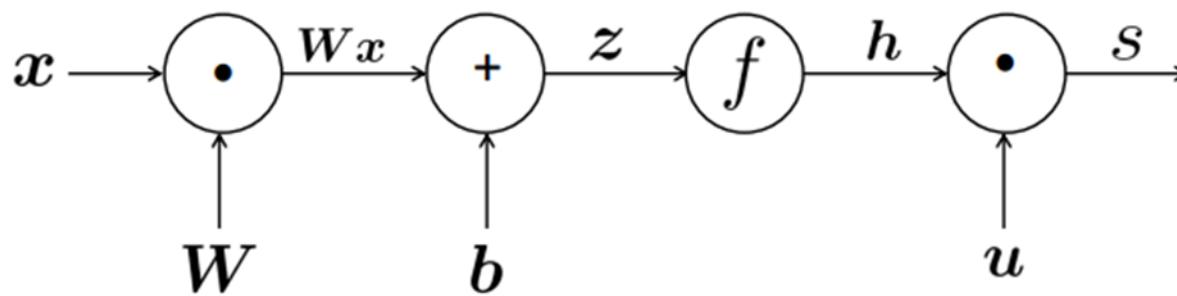


Adjacency matrix

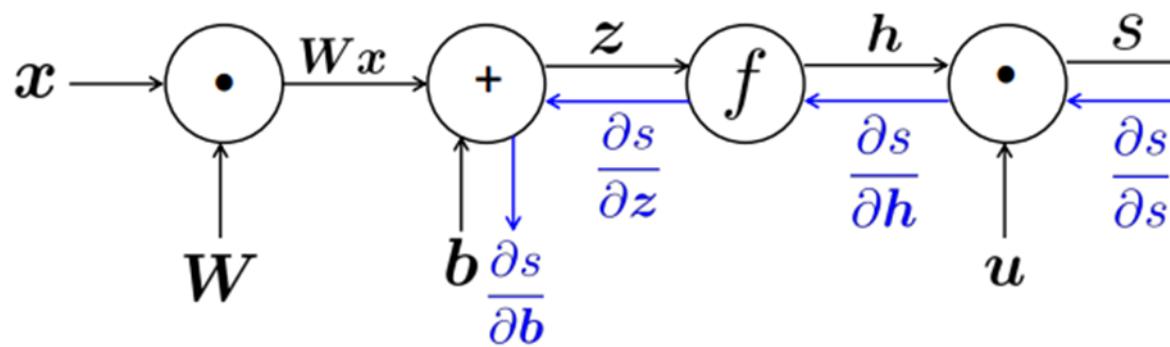
# A SENTENCE CAN BE A DIRECTED GRAPH



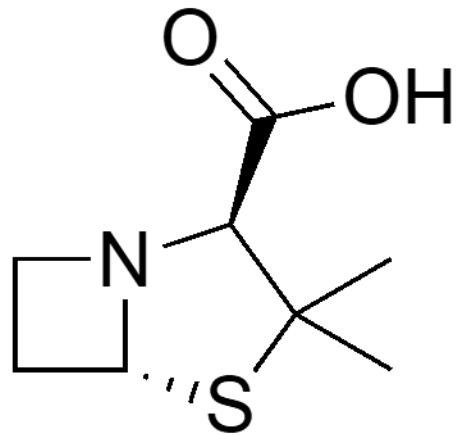
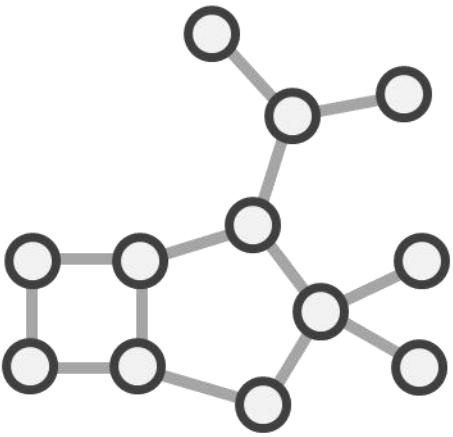
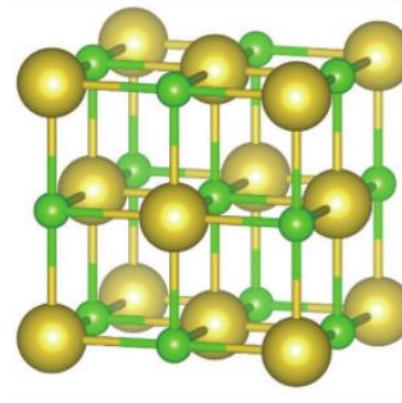
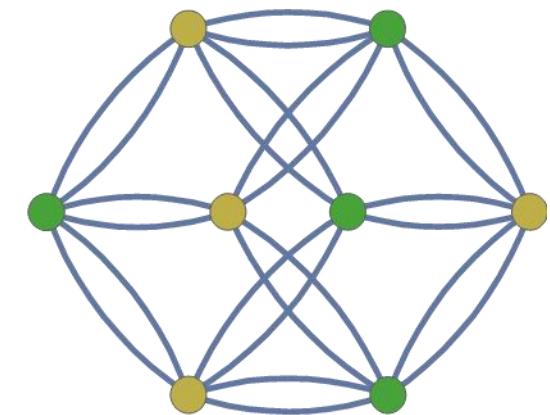
# A NEURAL NETWORK IS A GRAPH



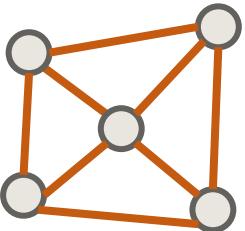
$$\begin{aligned}s &= \mathbf{u}^T \mathbf{h} \\ \mathbf{h} &= f(\mathbf{z}) \\ \mathbf{z} &= \mathbf{W}\mathbf{x} + \mathbf{b} \\ \mathbf{x} &\quad \text{(input)}\end{aligned}$$



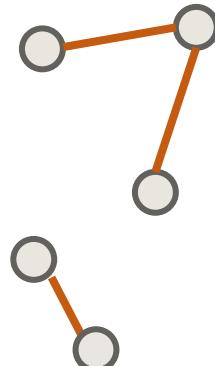
# GRAPHS ARE A NATURAL REPRESENTATION FOR CHEMISTRY



# ALL GRAPHS ARE NOT ALIKE



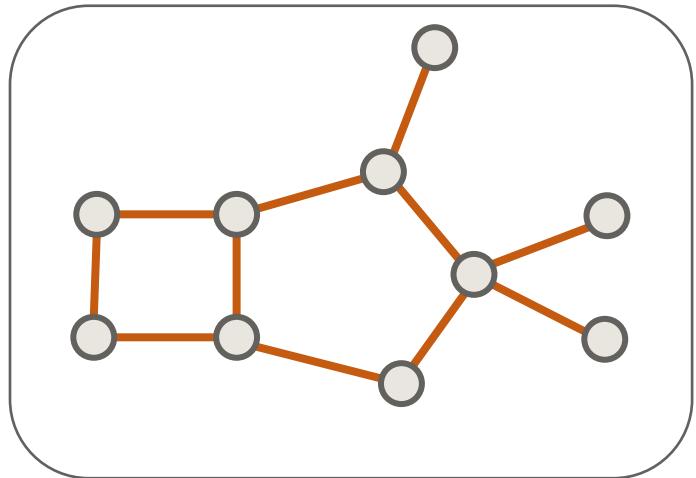
Fully connected



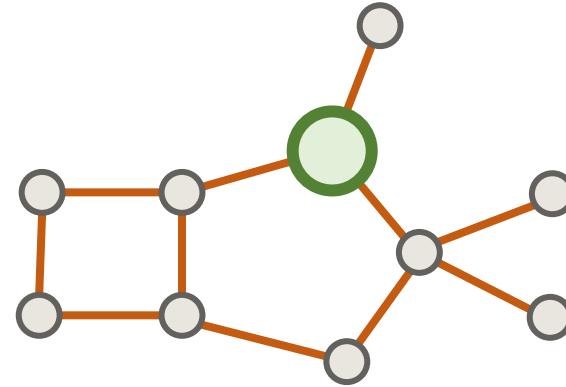
Sparse

| Dataset    | Graphs | Nodes | Edges |
|------------|--------|-------|-------|
| Fully con. | 1      | 5     | 20    |
| Sparse     | 2      | <4    | <3    |
| Wikipedia  | 1      | 12M   | 378M  |
| qm9        | 134k   | <9    | <26   |
| Cora       | 1      | 23k   | 91k   |

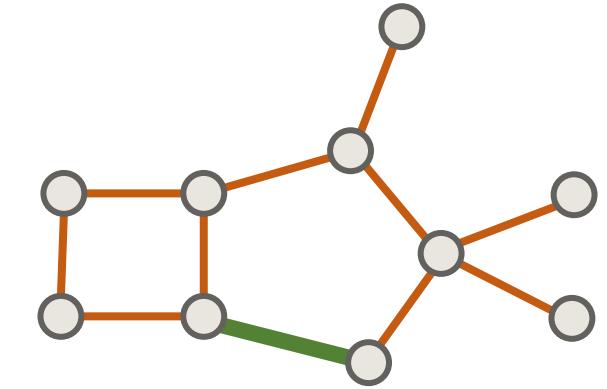
# TYPES OF PROPERTIES CALCULATED ON GRAPHS



Graph level e.g. total energy

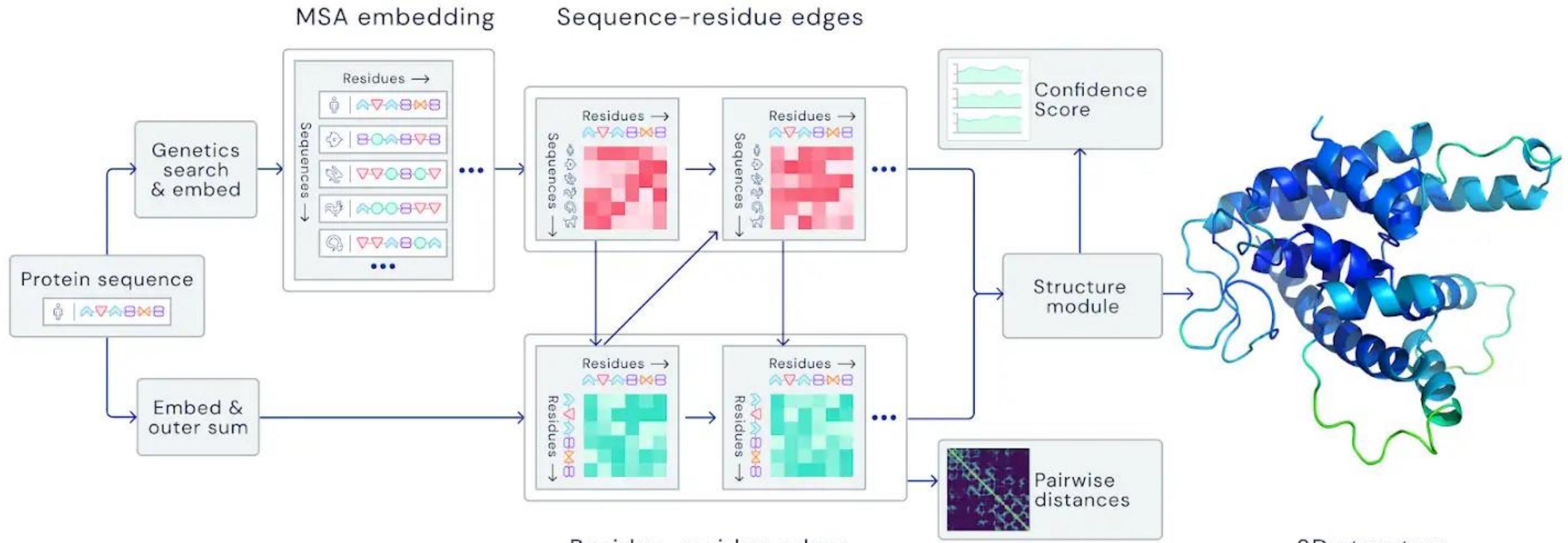


Node level e.g. forces



Edge level e.g. bond order

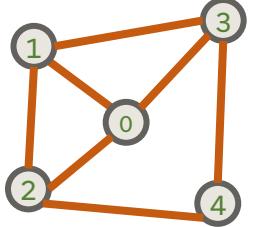
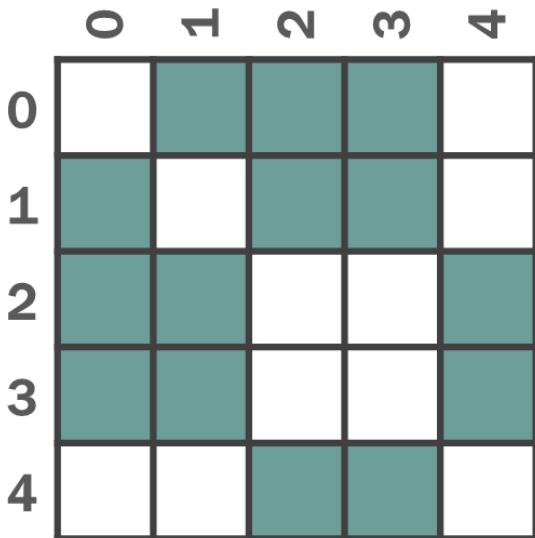
# GNNS JUST HELPED WIN A NOBEL PRIZE



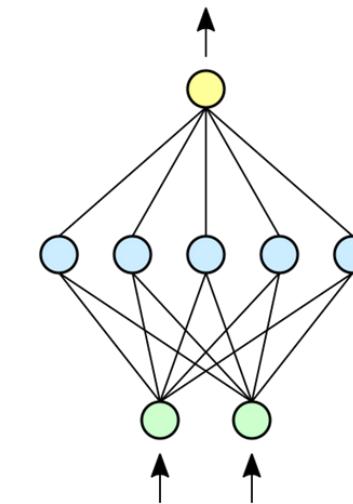
Represent the protein as a graph of amino acids

# INCLUDING GRAPHS IN DEEP LEARNING

Could directly use the adjacency matrix



|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 2 | 1 | 1 | 0 | 0 | 1 |
| 3 | 1 | 1 | 0 | 0 | 1 |
| 4 | 0 | 0 | 1 | 1 | 0 |



Issues: variable size and order dependency

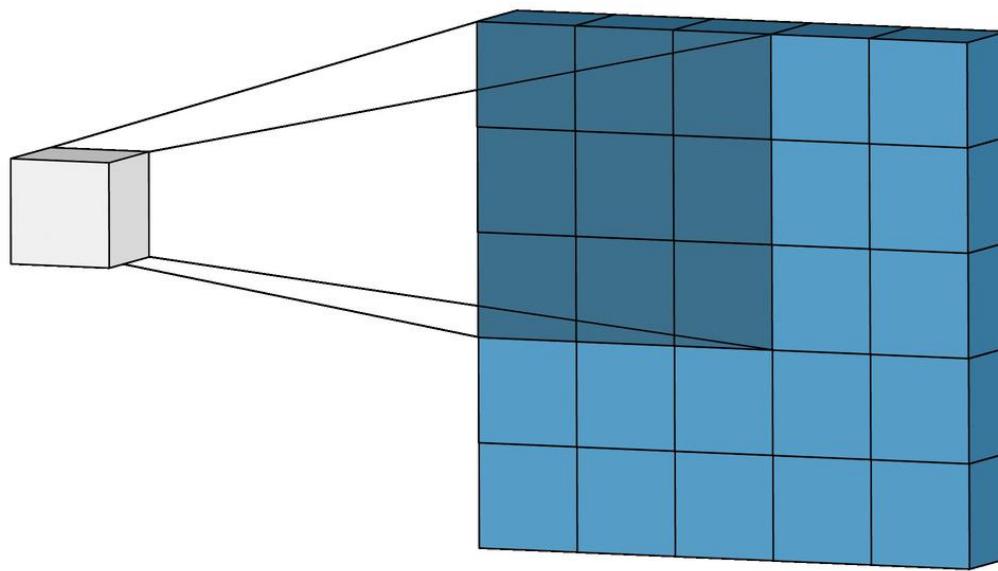
# CONVOLUTIONS FOR GRAPHS

A **convolutional neural network** (CNN) filter transforms and combines **information** from neighbouring pixels in an image

|    |    |    |
|----|----|----|
| 0  | -1 | 0  |
| -1 | 4  | -1 |
| 0  | -1 | 0  |

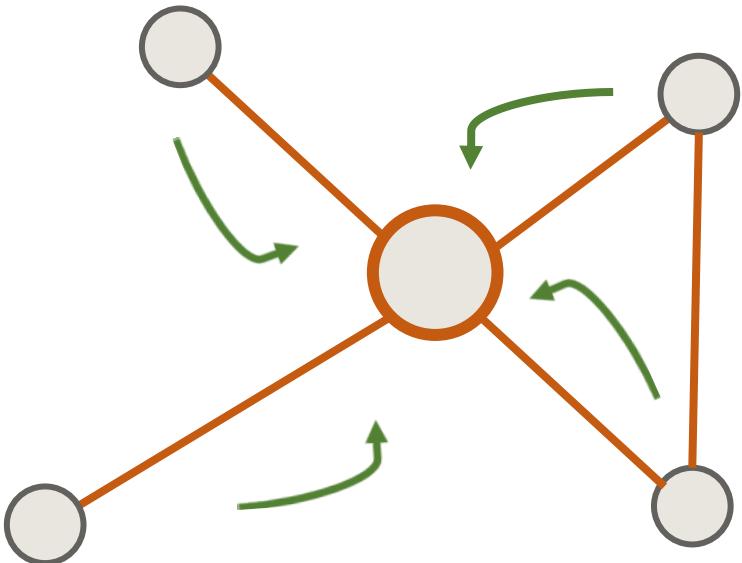
Convolution filter

*learned during training to extract  
higher level features e.g., edges*



# CONVOLUTIONS FOR GRAPHS

Images can be seen as a regular graph;  
can we **extend the concept of convolutions?**



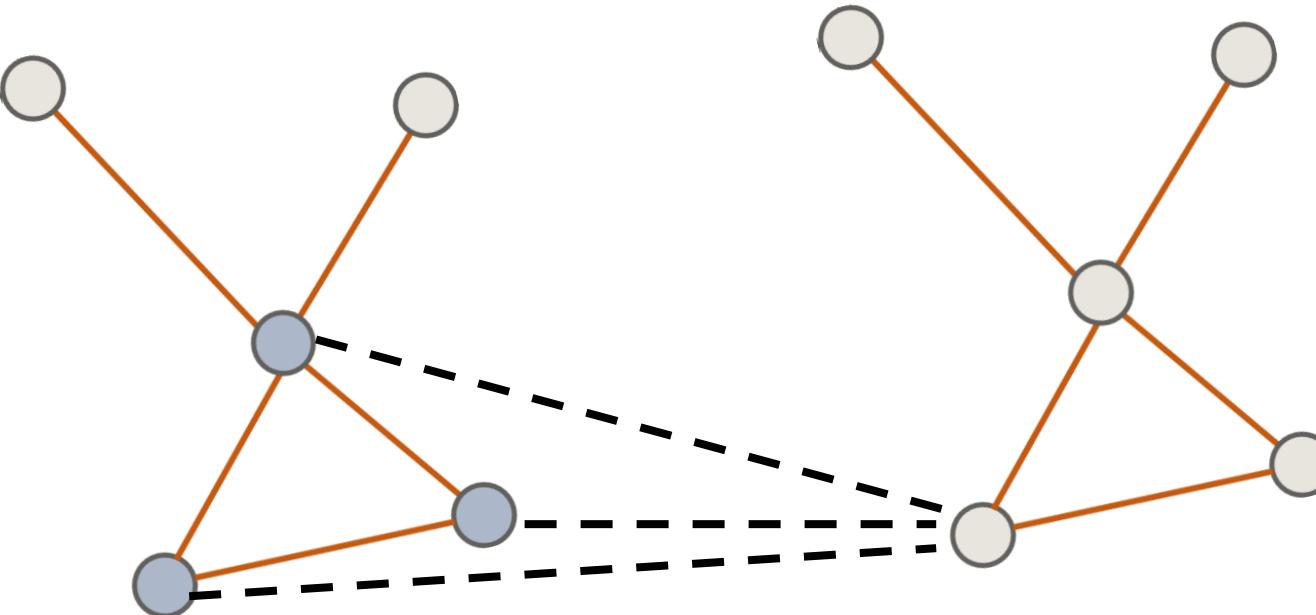
Convolution from **neighbour nodes**



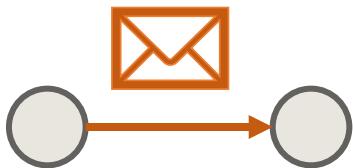
Convolution to **centre nodes**

# CONVOLUTIONS FOR GRAPHS

By iterating over the entire graph each node receives information from its neighbours



# WHERE DO NEURAL NETWORKS COME IN?



**Message passing**  
What information flows from one node to the next

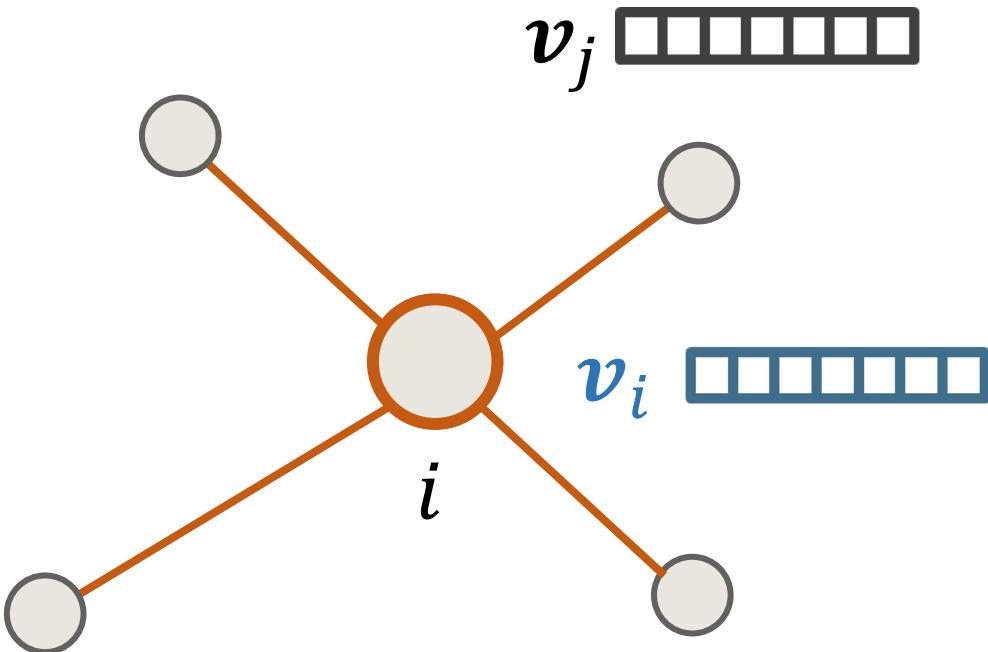


**Message pooling**  
How neighbouring information is added together



**Node updates**  
How the received information changes the node

## HOW THE MESSAGE GETS PASSED



$$\mathbf{m}_i = \bigoplus_{j \in \mathcal{N}(i)} M_t(\mathbf{v}_i, \mathbf{v}_j)$$

Message passing function

Message pooling function

$$\mathbf{v}'_i = U_t(\mathbf{v}_i, \mathbf{m}_i)$$

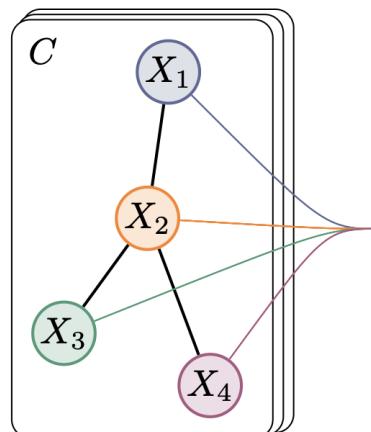
Node update function

# THE FIRST GRAPH CONVOLUTIONAL NETWORKS

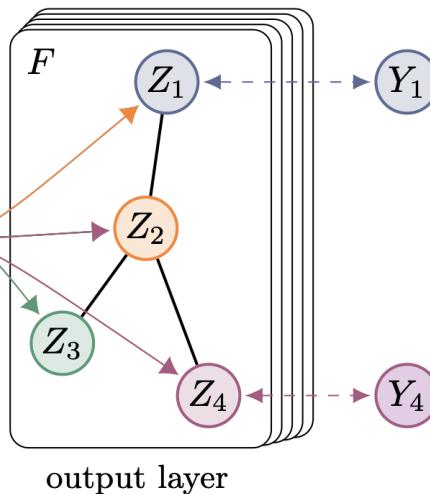
## SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf  
University of Amsterdam  
T.N.Kipf@uva.nl

Max Welling  
University of Amsterdam  
Canadian Institute for Advanced Research (CIFAR)  
M.Welling@uva.nl



hidden  
layers



(a) Graph Convolutional Network



(b) Hidden layer activations

# IMPLEMENTATION OF A GNN

Message

$$\mathbf{v}_j$$

No processing, node vector

Message pooling

$$\mathbf{m}_i = \sum_{j \in \mathcal{N}(i)} \frac{\mathbf{v}_j}{|\mathcal{N}(i)|}$$

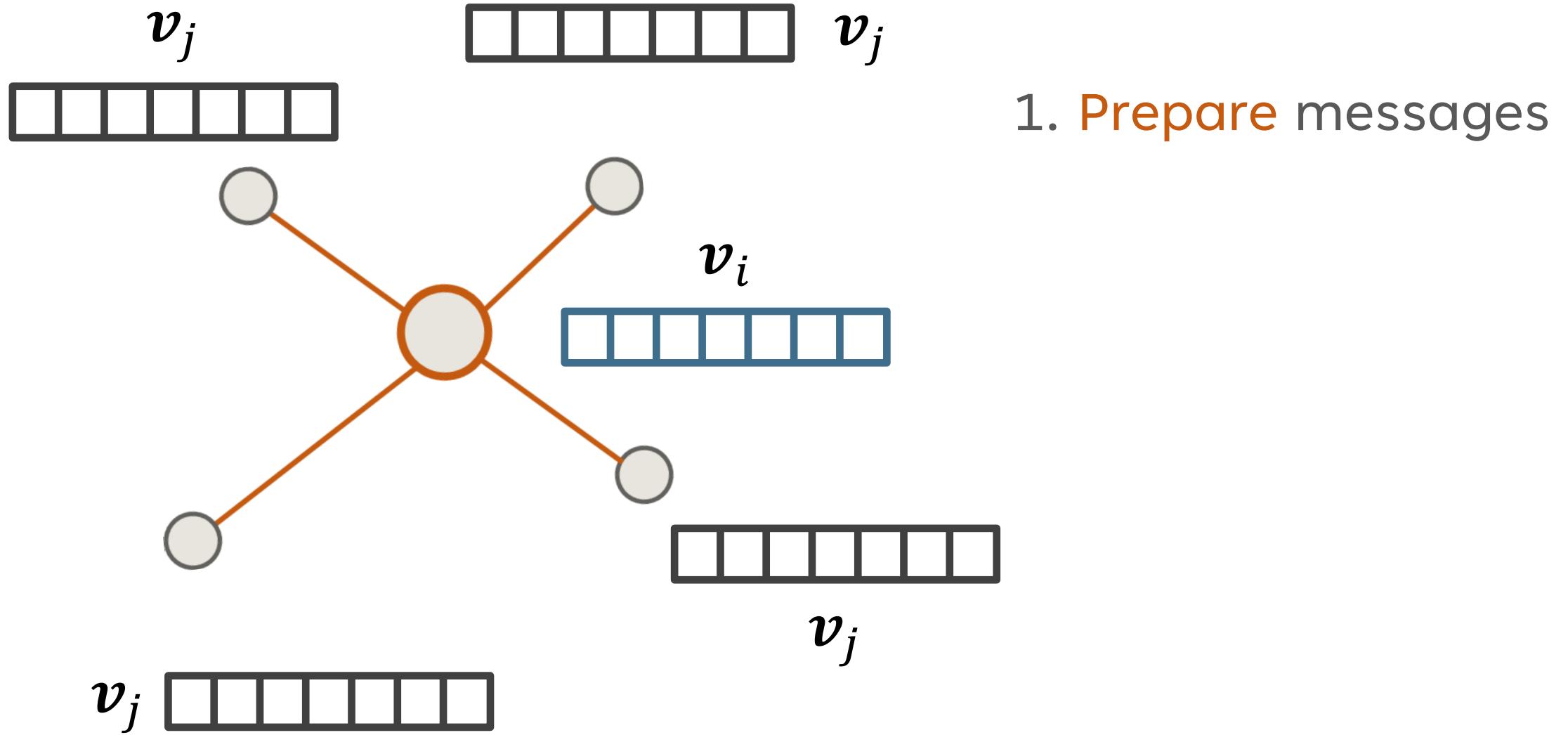
Mean pool across all neighbours

Node update

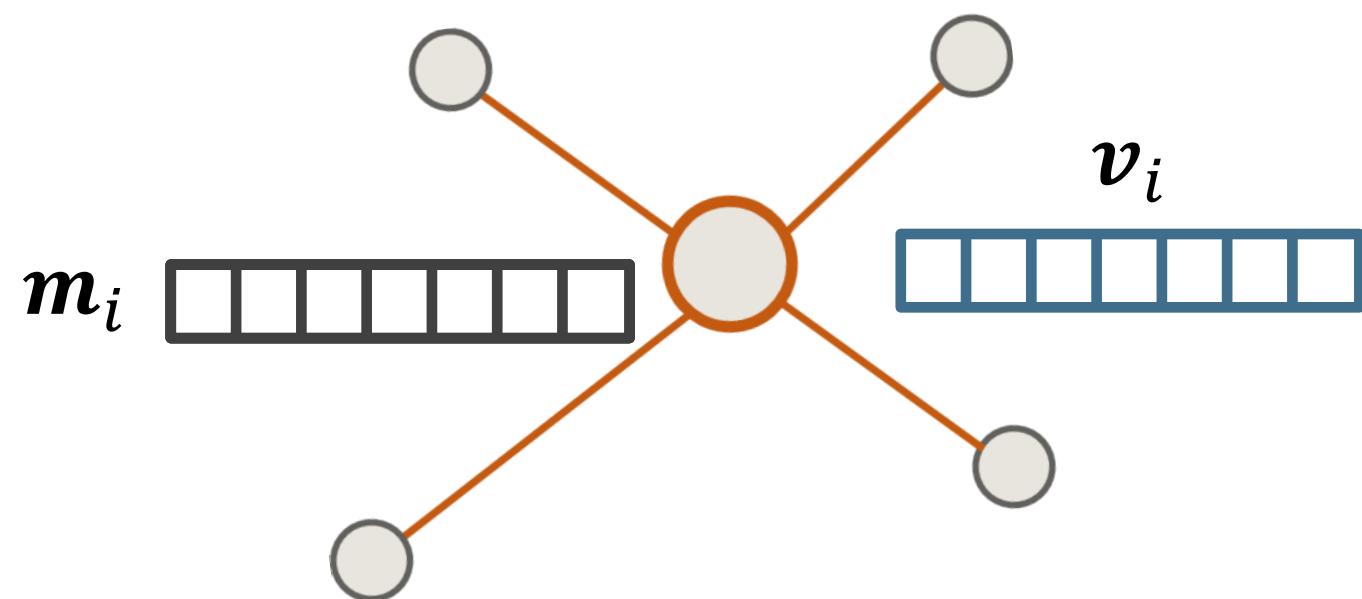
$$\mathbf{v}'_i = \sigma(\mathbf{W}\mathbf{m}_i + \mathbf{B}\mathbf{v}_i)$$

Parameterized learnable function - MLP

## VISUALISATION OF A GNN CONVOLUTION



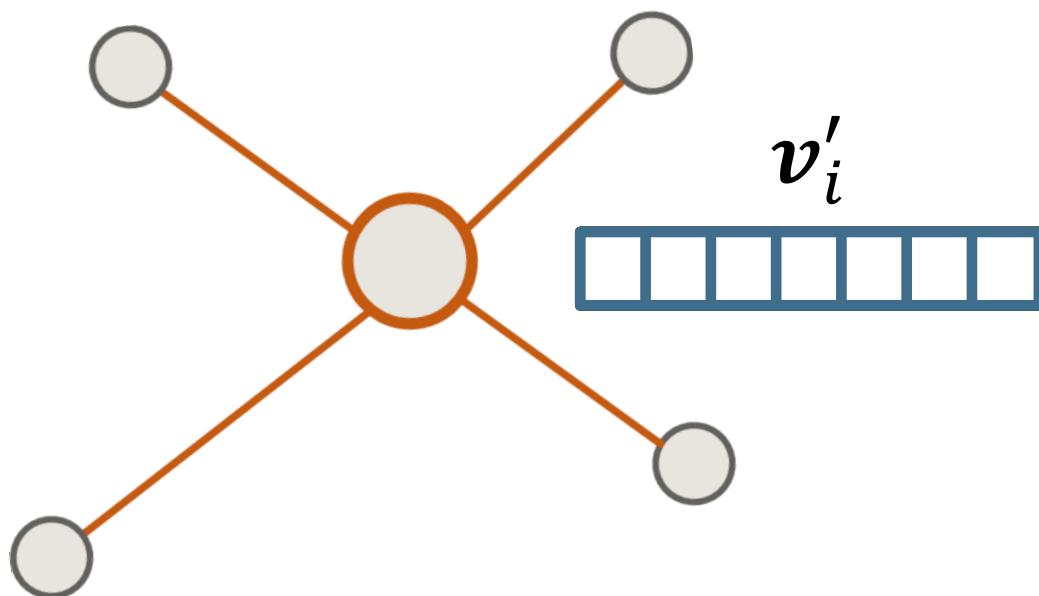
# VISUALISATION OF A GNN CONVOLUTION



1. Prepare messages

2. Pool messages

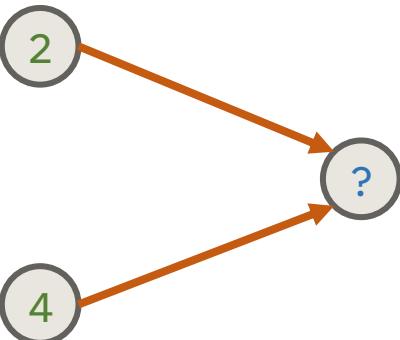
# VISUALISATION OF A GNN CONVOLUTION



1. **Prepare messages**
2. **Pool messages**
3. **Update embedding**

# PROPERTIES OF THE POOLING FUNCTION

The **pooling** function must be invariant to **node ordering**  
and the **number of nodes**



| Function | Node value |
|----------|------------|
| Max      | 4          |
| Mean     | 3          |
| Sum      | 6          |

## TRAINING A GNN

$$\mathbf{v}'_i = \sigma \left( \mathbf{W} \sum_{j \in \mathcal{N}(i)} \frac{\mathbf{v}_j}{|\mathcal{N}(i)|} + \mathbf{B} \mathbf{v}_i \right)$$

Feed the final node embeddings to a **loss function**

Run an optimiser to train the weight parameters

**W** and **B** are **shared** across all nodes

## EFFICIENCY AND INDUCTIVE CAPABILITY

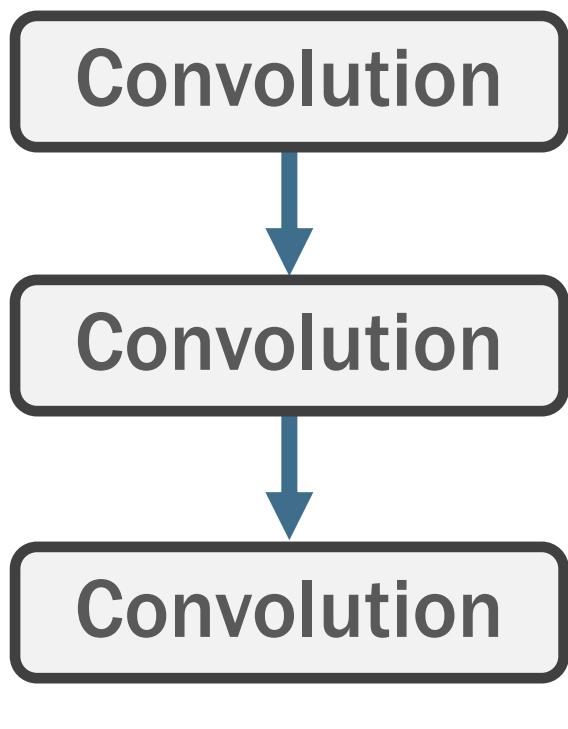
Each node **has its own network** due to its connectivity

Message, pool, and update functions are **shared for all nodes**

Can increase number of nodes **without increasing  
the number of parameters**

Can introduce new unseen node structures and just **plug in  
the same matrices**

## STACKING CONVOLUTIONS

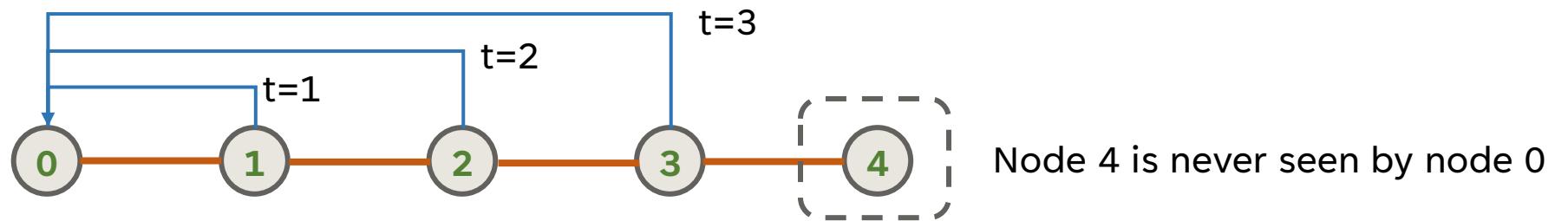


$$v_i^{(t+1)} = \sigma \left( \mathbf{W}^{(t)} \sum_{j \in \mathcal{N}(i)} \frac{v_j^{(t)}}{|\mathcal{N}(i)|} + \mathbf{B}^{(t)} v_i^{(t)} \right)$$

Weights are unique for each layer

# THE ADVANTAGE OF MULTIPLE CONVOLUTIONS

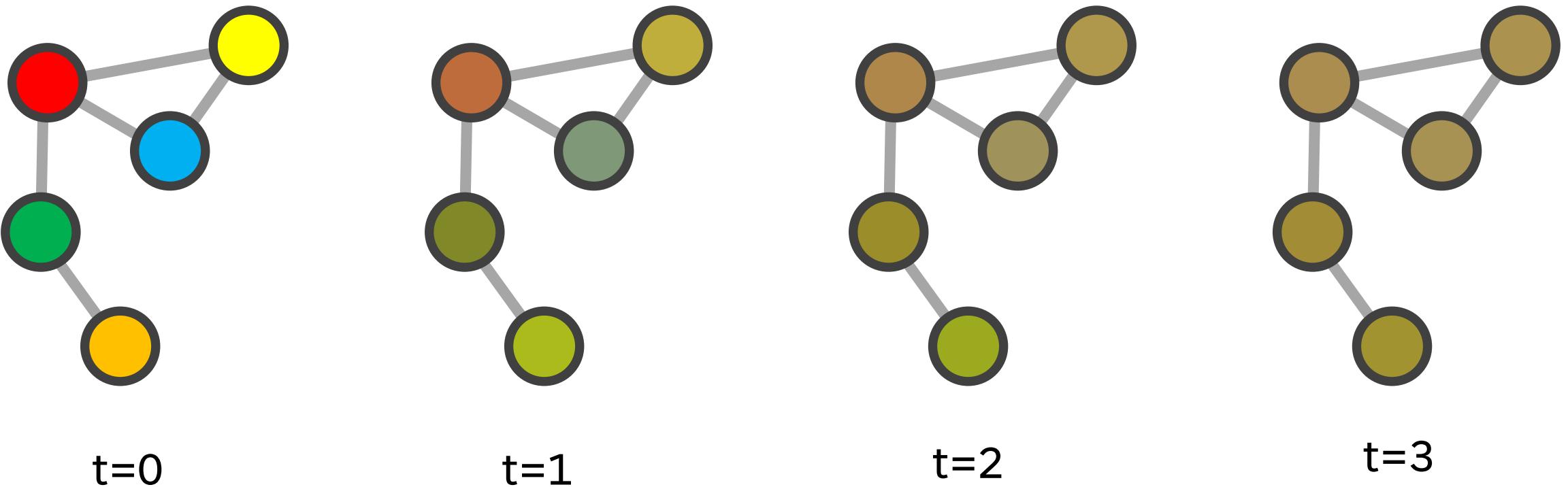
Graphs are **inherently local** – they only get information up to  $t$  convolutions away



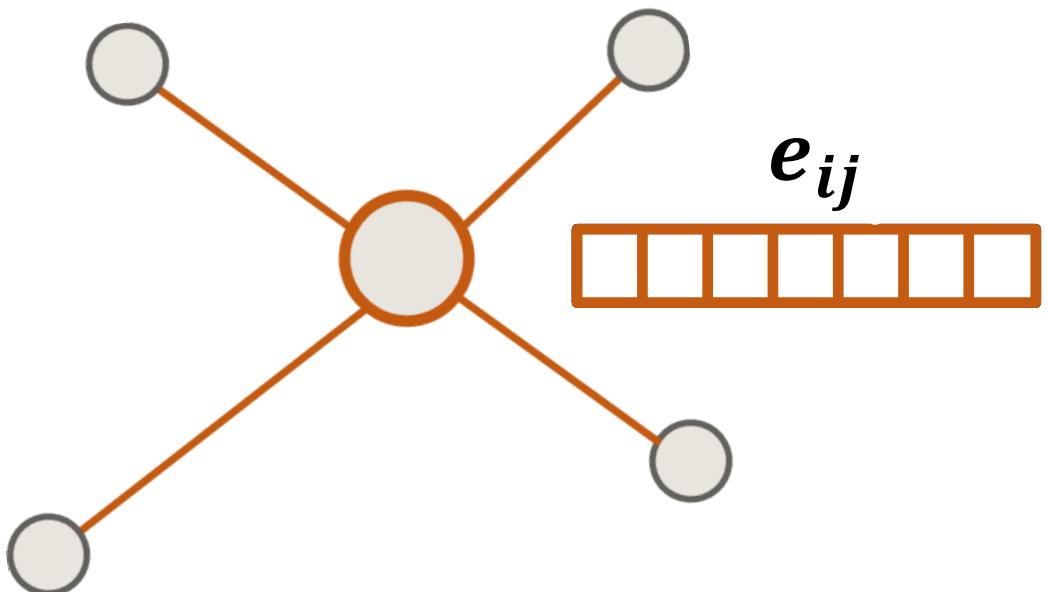
Stacking convolutions increases the **receptive field** of the graph

## THE DRAWBACK OF MULTIPLE CONVOLUTIONS

However, too many convolutions causes **over smoothing** –  
all node embeddings **converge to the same value**



## EDGE EMBEDDINGS



$$\mathbf{m}_i = \bigoplus_{j \in \mathcal{N}(i)} M_t(v_i, v_j, e_{ij})$$

Edge embedding

$$v'_i = U_t(v_i, \mathbf{m}_i)$$

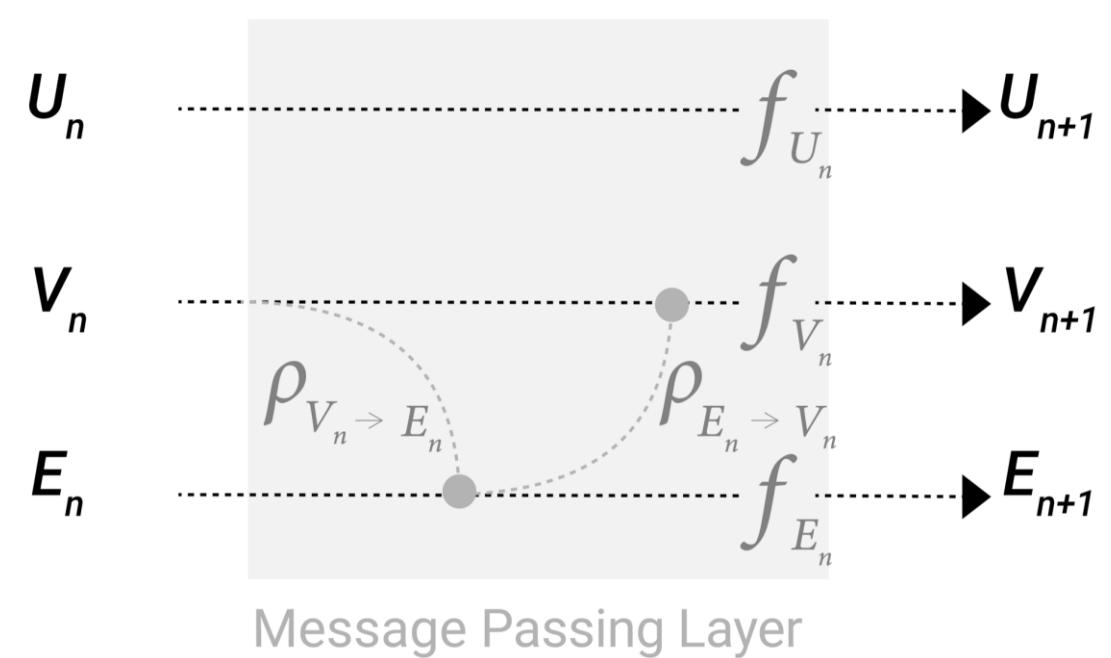
The update function stays  
the same

## MESSAGE PASSING NETWORKS – SIGNIFICANT FLEXIBILITY

Many options for how to treat edges in the pooling function

Edge embeddings may have different dimensionality to node embeddings

An option is to pool all edges and concatenate them at the end

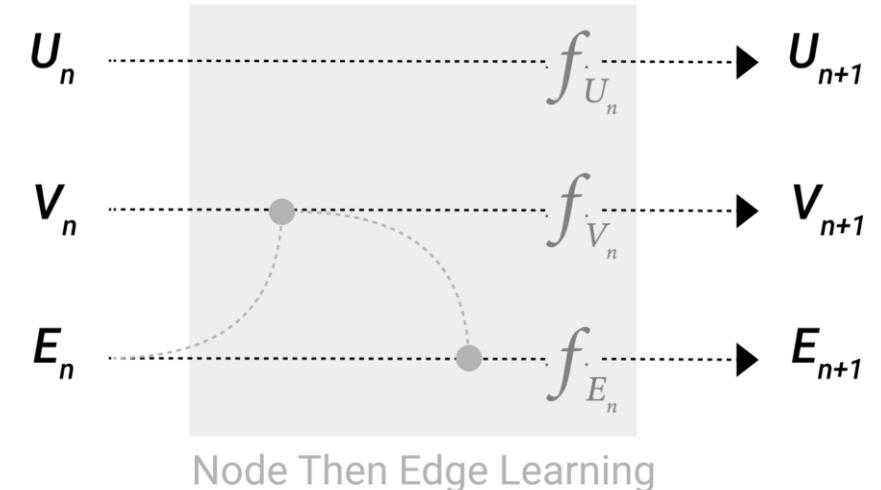
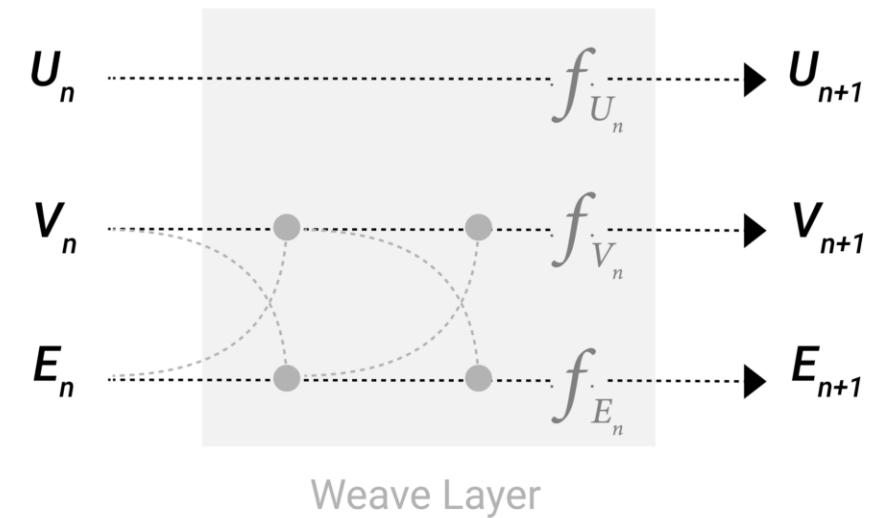


# MESSAGE PASSING NETWORKS – SIGNIFICANT FLEXIBILITY

Can update **nodes before edges** or vice versa

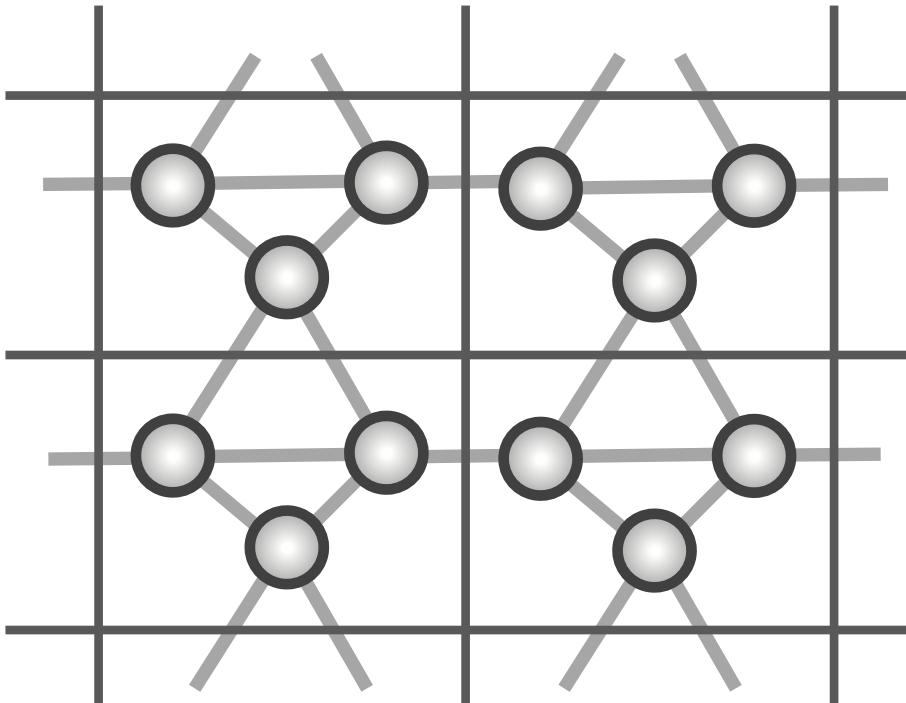
Or have a weave design to **pass messages back and forth**

All flexible design choices in **message passing networks**



# CONVOLUTIONAL GRAPH NETWORKS FOR CRYSTALS

Graphs are a natural representation for crystals and but  
we have **extra design constraints**

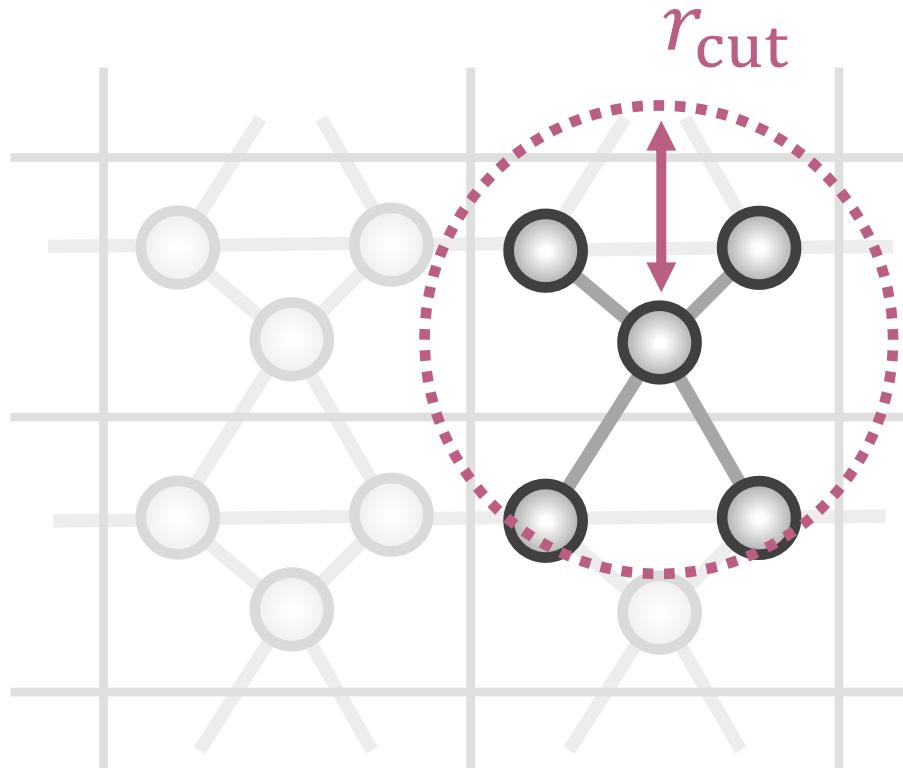


Networks should be **permutation**  
**and translation invariant**

Properties depend on **atom types**  
**and coordinates** not just  
connectivity

## CONSTRUCTING THE GRAPH FROM A CRYSTAL STRUCTURE

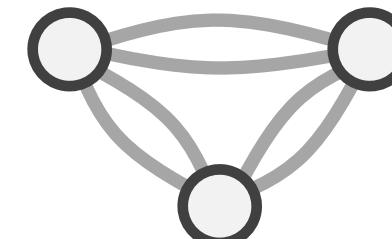
Include all atoms **within a certain cut-off as neighbours**



*Must consider periodic boundaries*

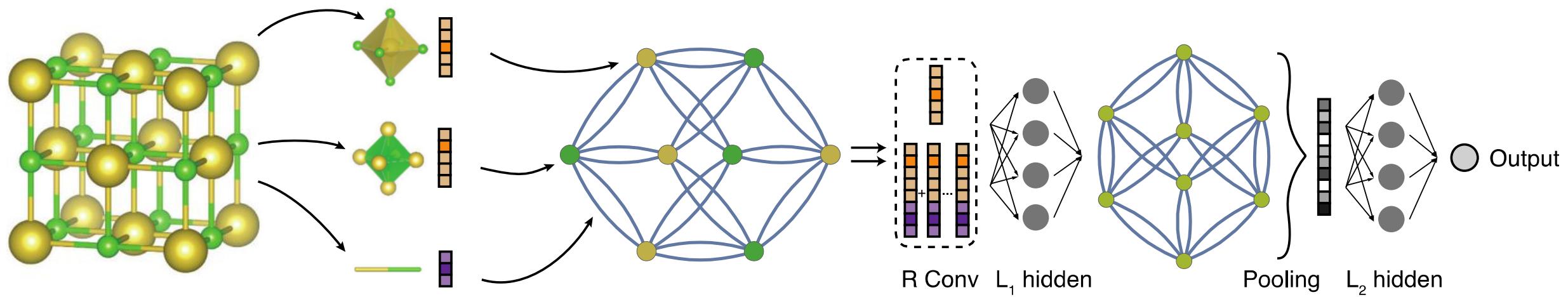
Perform the procedure for **each atom in the unit cell**

Nodes can share **multiple edges to the same neighbour** due to PBC



# CRYSTAL GRAPH CONVOLUTIONAL NEURAL NETWORKS (CGCNN)

CGCNN was the first time graph convolutions were applied to crystals

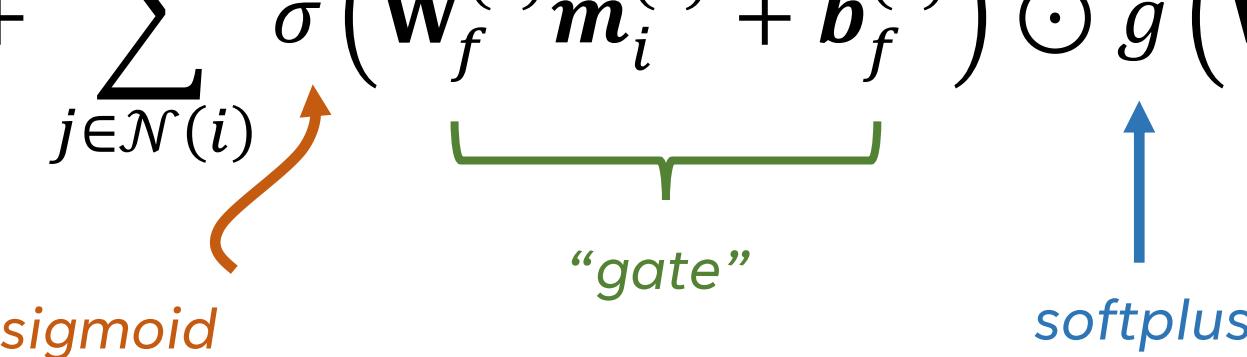


## IMPLEMENTATION OF CGCNN

Message function:

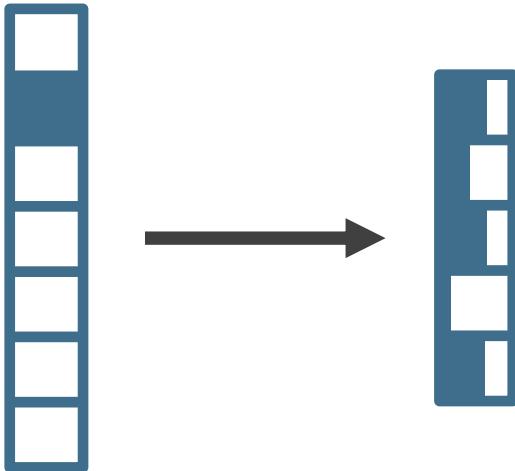
$$\mathbf{m}_i^{(t)} = \mathbf{v}_i^{(t)} \oplus \mathbf{v}_j^{(t)} \oplus \mathbf{e}_{i,j}$$

Update function:

$$\mathbf{v}_i^{(t+1)} = \mathbf{v}_i^{(t)} + \sum_{j \in \mathcal{N}(i)} \sigma \left( \mathbf{W}_f^{(t)} \mathbf{m}_i^{(t)} + \mathbf{b}_f^{(t)} \right) \odot g \left( \mathbf{W}_s^{(t)} \mathbf{m}_i^{(t)} + \mathbf{b}_s^{(t)} \right)$$


## INITIALISATION — NODE AND EDGE EMBEDDINGS

What to do for the **initial node and edge embeddings?**



Nodes

*The element type is one-hot encoded (dimension of 119) and passed through an MLP*



Edges

*The bond distance is projected onto a Gaussian basis (40 basis functions)*

## READOUT — CALCULATING THE FINAL PREDICTION

CGCNN generates *graph level predictions*, how are these generated from the final node embeddings?

Final pooling of  
all nodes

$$\mathbf{u}_c = \sum_{i \in \mathcal{G}} \frac{\mathbf{v}_i^{(T)}}{|\mathcal{G}|}$$

*num atoms*

SLP  
readout

*Property predicted*

$$E = \sigma(\mathbf{W}_r \mathbf{u}_c + \mathbf{b}_r)$$

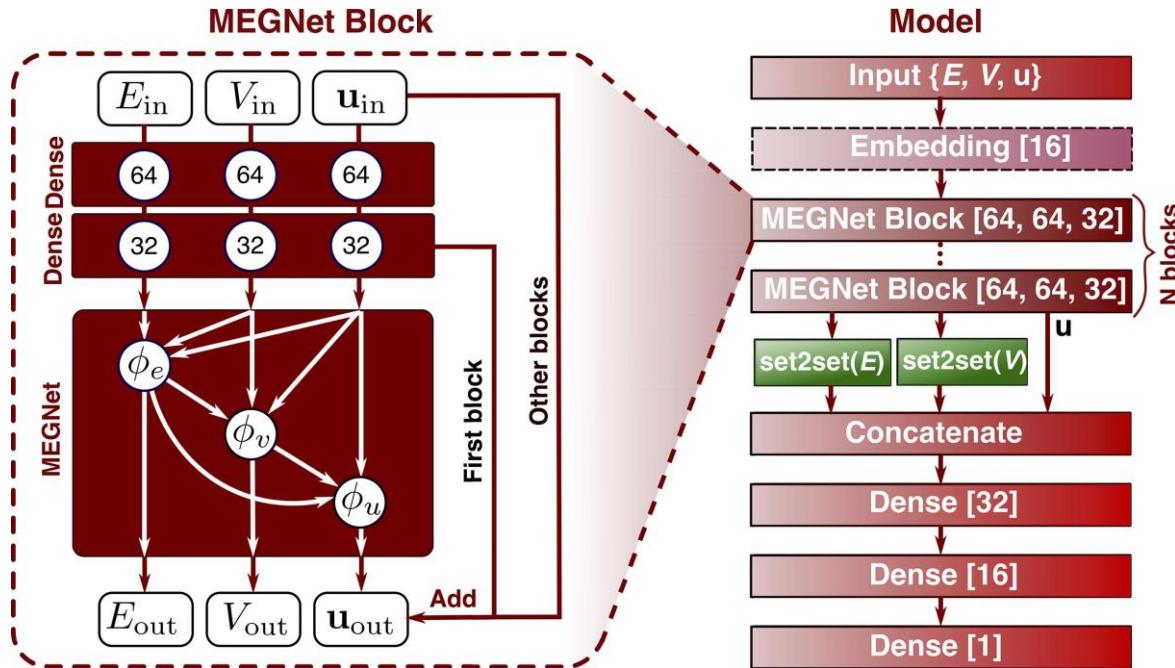
## CGCNN PERFORMANCE

CGCNN shows good accuracy for such a simple model but **errors are still too large for reliable science**

| Property         | # of train data | Unit     | MAE <sub>model</sub> | MAE <sub>DFT</sub> |
|------------------|-----------------|----------|----------------------|--------------------|
| Formation energy | 28 046          | eV/atom  | 0.039                | 0.081–0.136 [28]   |
| Absolute energy  | 28 046          | eV/atom  | 0.072                | ...                |
| Band gap         | 16 458          | eV       | 0.388                | 0.6 [32]           |
| Fermi energy     | 28 046          | eV       | 0.363                | ...                |
| Bulk moduli      | 2041            | log(GPa) | 0.054                | 0.050 [13]         |
| Shear moduli     | 2041            | log(GPa) | 0.087                | 0.069 [13]         |
| Poisson ratio    | 2041            | ...      | 0.030                | ...                |

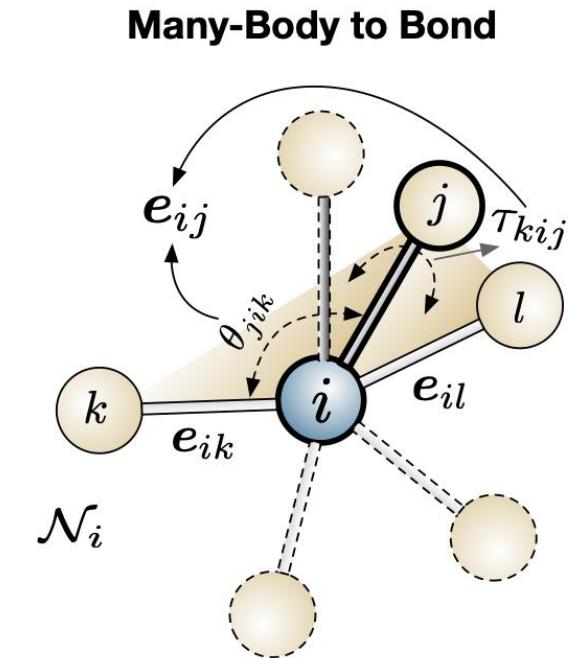
# ADVANCED MESSAGE PASSING NETWORKS

CGCNN only uses bond lengths as features. More advanced networks **show improved performance**



MEGNet

*Crystal features and set2set pooling*



M3GNet

*Bond angles and dihedrals*

# Equivariance vs Invariance

CGCNN only uses bond lengths as features. More advanced networks **show improved performance**

- **Invariant function:**

- Output does *not change* under a transformation

- Example:

- Total energy is invariant under rotation

- **Equivariant function:**

- Output transforms *predictably* with the input

- Example:

- Forces rotate when the molecule rotates

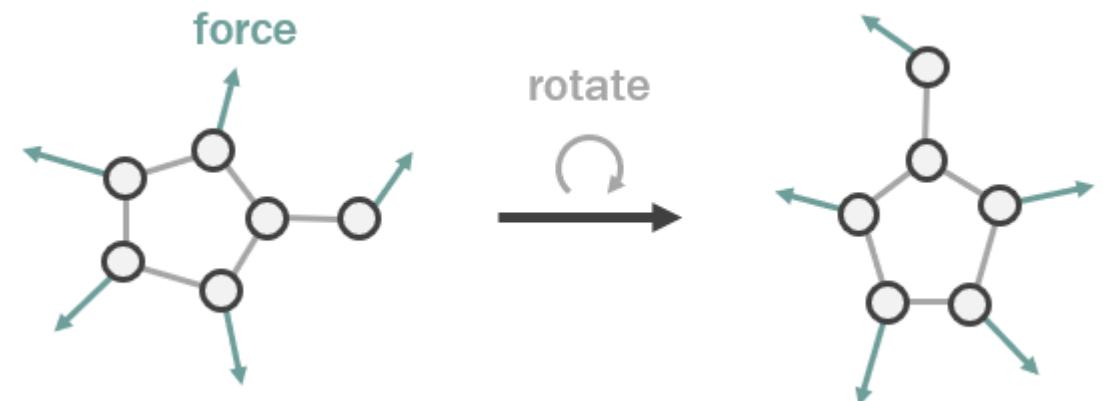
- **Formally:**

- Invariance:

$$f(Tx) = f(x)$$

- Equivariance:

$$f(Tx) = Tf(x)$$



# Equivariance vs Invariance

CGCNN only uses bond lengths as features. More advanced networks **show improved performance**

- **Invariant function:**

- Output does *not change* under a transformation

- Example:

- Total energy is invariant under rotation

- **Equivariant function:**

- Output transforms *predictably* with the input

- Example:

- Forces rotate when the molecule rotates

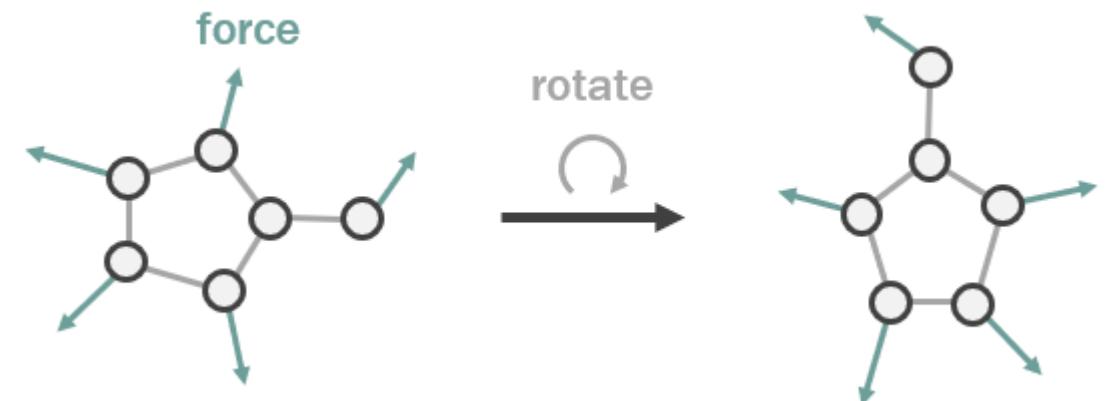
- **Formally:**

- Invariance:

$$f(Tx) = f(x)$$

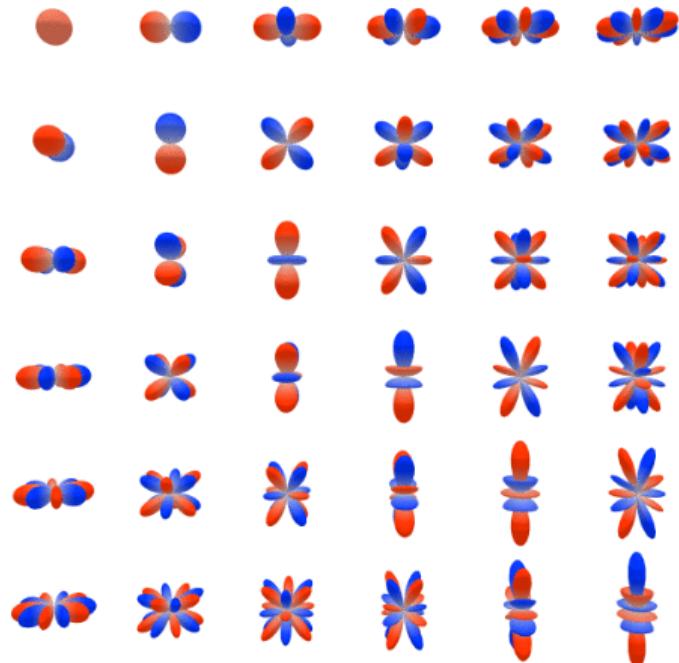
- Equivariance:

$$f(Tx) = Tf(x)$$



## Equivariance vs Invariance

Use spherical harmonics in the message passing to ensure that **only certain symmetries are allowed**.



$$m_m^{(l)} = \sum_{m_1, m_2} c_{l_1 m_1, l_2 m_2}^{lm} h_{m_1}^{(l_1)} r_{m_2}^{(l_2)}$$

$$r_{ij} = Y_m^{(l)}(r_{ij}) f(r_{ij})$$

# GRAPH NETWORKS AND THE MATBENCH DATASET

Graph neural networks are widely used for property predictions in chemistry but excel on larger datasets

|                  | Target name (unit)   |                     |                   |           |               |             |       |                  |                  |                   |               |             |                   |
|------------------|----------------------|---------------------|-------------------|-----------|---------------|-------------|-------|------------------|------------------|-------------------|---------------|-------------|-------------------|
|                  | Yield Strength (GPa) | E Exfol. (meV/atom) | PhDOS Peak (1/cm) | (no unit) | Band Gap (eV) | Metallicity | GFA   | log K (log(GPa)) | log G (log(GPa)) | E form. (eV/atom) | Band Gap (eV) | Metallicity | E form. (eV/atom) |
| Algorithm        | 97.5                 | 39.9                | 56.2              | 0.315     | 0.294         | 0.934       | 0.88  | 0.0647           | 0.0874           | 0.2               | 0.282         | 0.909       | 0.173             |
| Automatminer     | 97.5                 | 39.9                | 56.2              | 0.315     | 0.294         | 0.934       | 0.88  | 0.0647           | 0.0874           | 0.2               | 0.282         | 0.909       | 0.173             |
| RF               | 104                  | 49.9                | 68                | 0.421     | 0.356         | 0.929       | 0.875 | 0.081            | 0.104            | 0.235             | 0.345         | 0.9         | 0.116             |
| CGCNN            |                      | 49.2                | 57.8              | 0.599     |               |             |       | 0.0712           | 0.0895           | 0.0452            | 0.228         | 0.954       | 0.0332            |
| MEGNet           |                      | 55.9                | 39.4              | 0.543     |               |             |       | 0.0751           | 0.0939           | 0.0417            | 0.222         | 0.977       | 0.0389            |
| Best Literature* |                      | 37.3                |                   | 0.5       |               | 0.97        | 0.8   |                  |                  |                   |               |             |                   |

# USES OF GRAPH NETWORKS

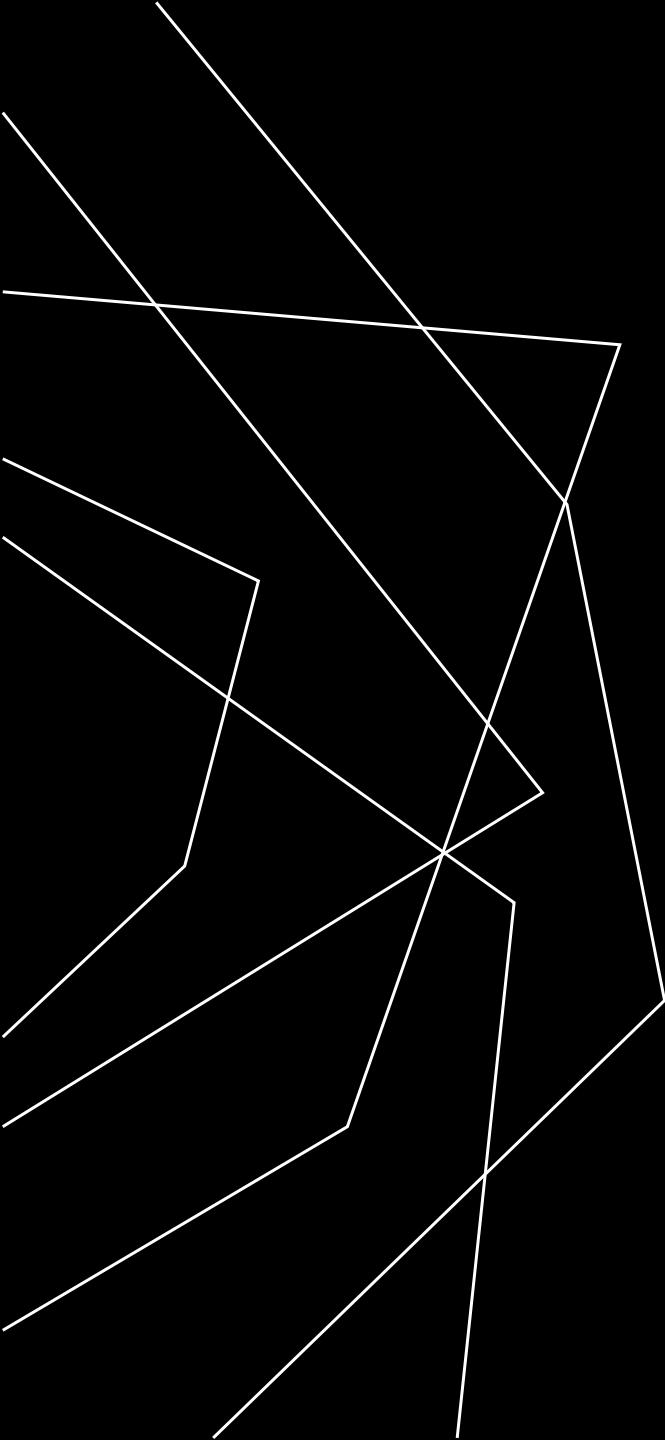
GNNs take up **most of the top spots** on the current leader board

Many **high-performance MLIPs** use graphs (MACE, nequip, allegro)

| Task name              | Samples | Algorithm             | Verified MAE (unit) or ROCAUC | Notes              |
|------------------------|---------|-----------------------|-------------------------------|--------------------|
| matbench_steels        | 312     | MODNet (v0.1.12)      | <b>87.7627 (MPa)</b>          |                    |
| matbench_jdft2d        | 636     | MODNet (v0.1.12)      | <b>33.1918 (meV/atom)</b>     |                    |
| matbench_phonons       | 1,265   | MegNet (kgcnn v2.1.0) | <b>28.7606 (cm^-1)</b>        | structure required |
| matbench_expt_gap      | 4,604   | MODNet (v0.1.12)      | <b>0.3327 (eV)</b>            |                    |
| matbench_dielectric    | 4,764   | MODNet (v0.1.12)      | <b>0.2711 (unitless)</b>      |                    |
| matbench_expt_is_metal | 4,921   | AMMExpress v2020      | <b>0.9209</b>                 |                    |
| matbench_glass         | 5,680   | MODNet (v0.1.12)      | <b>0.9603</b>                 |                    |
| matbench_log_gvrh      | 10,987  | coNGN                 | <b>0.0670 (log10(GPa))</b>    | structure required |
| matbench_log_kvrh      | 10,987  | coNGN                 | <b>0.0491 (log10(GPa))</b>    | structure required |
| matbench_perovskites   | 18,928  | coGN                  | <b>0.0269 (eV/unit cell)</b>  | structure required |
| matbench_mp_gap        | 106,113 | coGN                  | <b>0.1559 (eV)</b>            | structure required |
| matbench_mp_is_metal   | 106,113 | CGCNN v2019           | <b>0.9520</b>                 | structure required |
| matbench_mp_e_form     | 132,752 | coGN                  | <b>0.0170 (eV/atom)</b>       | structure required |

## CONCEPT CHECKLIST

- Many datasets can be represented as graphs.
- GNNs work by i) building a graph and ii) propagating information between neighbours using NNs
- GNNs are scalable and can generalise well
- There are many possibilities for designing GNNs



THANK YOU

[mdi-group.github.com](https://mdi-group.github.com)