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BEFORE WE START

Let’s open up the exercise notebook in colab and put the 
dependencies loading in the background.
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WHAT IS A GRAPH?
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Node/Vertex

Edge

Graphs encode relations 

between entities.

Nodes have information 

about the entity.

Edges connect nodes.



WHAT IS A GRAPH?

4

Node/Vertex

Edge

Edges can be directed or 

undirected.

Meaning that information 

can flow in either or both 

directions.



WHAT IS A GRAPH?

5

Node/Vertex

Edge

Information is stored in 

both nodes and edges.

Information is stored as 

embeddings.



WHERE DO WE FIND/USE GRAPHS?
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Social networks. >1B nodes; >10B edges Biological systems



WHERE DO WE FIND/USE GRAPHS?
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Eurovision song contest Economics



AN IMAGE IS A GRAPH WITH REGULAR STRUCTURE
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Image pixels Graph structure Adjacency matrix



A SENTENCE CAN BE A DIRECTED GRAPH

9

usaroundallareGraphs



A NEURAL NETWORK IS A GRAPH
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GRAPHS ARE A NATURAL REPRESENTATION FOR CHEMISTRY
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ALL GRAPHS ARE NOT ALIKE
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Dataset Graphs Nodes Edges

Fully con. 1 5 20

Sparse 2 <4 <3

Wikipedia 1 12M 378M

qm9 134k <9 <26

Cora 1 23k 91k

Fully connected Sparse



TYPES OF PROPERTIES CALCULATED ON GRAPHS
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Graph level e.g. total energy Node level e.g. forces Edge level e.g. bond order



GNNS JUST HELPED WIN A NOBEL PRIZE
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Represent the protein as a graph of amino acids



INCLUDING GRAPHS IN DEEP LEARNING
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1

2 4

3

0

Could directly use the adjacency matrix

Issues: variable size and order dependency



CONVOLUTIONS FOR GRAPHS
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0 –1 0

–1 4 –1

0 –1 0

A convolutional neural network (CNN) filter transforms and combines information from neighbouring pixels in an 

image

Convolution filter

learned during training to extract 

higher level features e.g., edges



CONVOLUTIONS FOR GRAPHS
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Images can be seen as a regular graph; 

can we extend the concept of convolutions?

Convolution from neighbour nodes

Convolution to centre nodes



CONVOLUTIONS FOR GRAPHS
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By iterating over the entire graph each node receives information from its neighbours



WHERE DO NEURAL NETWORKS COME IN?
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Σ

Message passing

What information 

flows from one 

node to the next

Message pooling

How neighbouring 

information is 

added together

Node updates

How the received 

information 

changes the node



HOW THE MESSAGE GETS PASSED
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𝒗𝑗

𝒗𝑖

𝑖

Message passing function

Message pooling function

Node update function



THE FIRST GRAPH CONVOLUTIONAL NETWORKS
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IMPLEMENTATION OF A GNN
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𝒎𝑖 = ෍

𝑗∈𝒩 𝑖

𝒗𝑗

𝒩 𝑖

𝒗𝑗

𝒗𝑖
′ = 𝜎 𝐖𝒎𝑖 + 𝐁𝒗𝑖

Message 

Message pooling

Node update

No processing, node 

vector 

Mean pool across all 

neighbours

Parameterized lernable 

function - MLP



𝒗𝑗

1. Prepare messages

𝒗𝑗

𝒗𝑗
𝒗𝑗

𝒗𝑖

VISUALISATION OF A GNN CONVOLUTION



𝒗𝑗𝒗𝑗𝒗𝑗𝒗𝑗𝒎𝑖

1. Prepare messages

2. Pool messages

𝒗𝑖

VISUALISATION OF A GNN CONVOLUTION



𝒗𝑖
′

1. Prepare messages

2. Pool messages

3. Update embedding

VISUALISATION OF A GNN CONVOLUTION



PROPERTIES OF THE POOLING FUNCTION
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Function Node value

Max 4

Mean 3

Sum 6

The pooling function must be invariant to node ordering 

and the number of nodes

2

4

?



TRAINING A GNN
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𝒗𝑖
′ = 𝜎 𝐖 ෍

𝑗∈𝒩 𝑖

𝒗𝑗

𝒩 𝑖
+ 𝐁𝒗𝑖

Feed the final node embeddings to a loss function

Run an optimiser to train the weight parameters

𝐖 and 𝐁 are shared across all nodes



EFFICIENCY AND INDUCTIVE CAPABILITY
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Each node has its own network due to its connectivity

Message, pool, and update functions are shared for all nodes

Can increase number of nodes without increasing 

the number of parameters

Can introduce new unseen node structures and just plug in 

the same matrices



STACKING CONVOLUTIONS
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Convolution

Convolution

𝒗𝑖
(1)

Convolution

𝒗𝑖
(2)

𝒗𝑖
(3)

𝒗𝑖
(𝑡+1)

= 𝜎 𝐖(𝑡) ෍

𝑗∈𝒩 𝑖

𝒗𝑗
(𝑡)

𝒩 𝑖
+ 𝐁(𝑡)𝒗𝑖

(𝑡)

Weights are unique for each layer

𝒗𝑖
(0)



THE ADVANTAGE OF MULTIPLE CONVOLUTIONS
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0 1 2 3 4

t=1
t=2

t=3

Node 4 is never seen by node 0

Graphs are inherently local – they only get information up to t 

convolutions away

Stacking convolutions increases the receptive field of the graph



THE DRAWBACK OF MULTIPLE CONVOLUTIONS
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However, too many convolutions causes over smoothing —

all node embeddings converge to the same value

t=0 t=1 t=2 t=3



EDGE EMBEDDINGS
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𝒆𝒊𝒋𝑖
′

𝒎𝑖 = ໄ

𝑗∈𝒩 𝑖

𝑀𝑡(𝒗𝑖 , 𝒗𝑗 , 𝒆𝑖𝑗)

𝒗𝑖
′ = 𝑈𝑡(𝒗𝑖 , 𝒎𝑖)

Edge embedding

The update function stays 

the same



MESSAGE PASSING NETWORKS – SIGNIFICANT FLEXIBILITY

Many options for how to treat edges in the 

pooling function

Edge embeddings may have different 

dimensionality to node embeddings

An option is to pool all edges and 

concatenate them at the end



MESSAGE PASSING NETWORKS – SIGNIFICANT FLEXIBILITY

Can update nodes before edges or vice 

versa

Or have a weave design to pass messages 

back and forth 

All flexible design choices in message 

passing networks



CONVOLUTIONAL GRAPH NETWORKS FOR CRYSTALS

Graphs are a natural representation for crystals and but 

we have extra design constraints

Networks should be permutation 

and translation invariant

Properties depend on atom types 

and coordinates not just 

connectivity



CONSTRUCTING THE GRAPH FROM A CRYSTAL STRUCTURE

Must consider periodic boundaries

Include all atoms within a certain cut-off as neighbours

𝑟cut
Perform the procedure for each atom in the 

unit cell

Nodes can share multiple edges to the same 

neighbour due to PBC



CRYSTAL GRAPH CONVOLUTIONAL NEURAL NETWORKS (CGCNN)

CGCNN was the first time graph convolutions were applied to 

crystals

Xie and Grossman Phys. Rev. Lett. 120, 145301 (2018)



IMPLEMENTATION OF CGCNN

Message function:

Update function:

𝒎𝑖
(𝑡)

= 𝒗𝑖
(𝑡)

⊕ 𝒗𝑗
(𝑡)

⊕ 𝒆𝑖,𝑗

𝒗𝑖
(𝑡+1)

= 𝒗𝑖
(𝑡)

+ ෍

𝑗∈𝒩 𝑖

𝜎 𝐖𝑓
(𝑡)

𝒎𝑖
(𝑡)

+ 𝒃𝑓
(𝑡)

⊙ 𝑔 𝐖𝑠
(𝑡)

𝒎𝑖
(𝑡)

+ 𝒃𝑠
(𝑡)

 

sigmoid softplus
“gate”



INITIALISATION — NODE AND EDGE EMBEDDINGS

What to do for the initial node and edge embeddings?

Nodes

The element type is one-hot 

encoded (dimension of 119) and 

passed through an MLP

Edges

The bond distance is projected 

onto a Gaussian basis (40 basis 

functions)



READOUT — CALCULATING THE FINAL PREDICTION

CGCNN generates graph level predictions, how are these generated from the 

final node embeddings?

𝒖𝑐 = ෍

𝑖∈𝒢

𝒗𝑖
(𝑇)

𝒢
Final pooling of 

all nodes

SLP

readout

Property predicted

𝐸 = 𝜎 𝐖𝑟𝐮𝑐 + 𝒃𝑟

num atoms



CGCNN PERFORMANCE

CGCNN shows good accuracy for such a simple model but errors are still too 

large for reliable science



ADVANCED MESSAGE PASSING NETWORKS

CGCNN only uses bond lengths as features. More advanced networks show 

improved performance

MEGNet

Crystal features and set2set pooling 

M3GNet

Bond angles and dihedrals



Equivariance vs Invariance

CGCNN only uses bond lengths as features. More advanced networks show 

improved performance

•Invariant function:

•Output does not change under a transformation

•Example:

•Total energy is invariant under rotation

•Equivariant function:

•Output transforms predictably with the input

•Example:

•Forces rotate when the molecule rotates

•Formally:

•Invariance:

 f(Tx)=f(x)

•Equivariance:

 f(Tx)=Tf(x)



Equivariance vs Invariance

CGCNN only uses bond lengths as features. More advanced networks show 

improved performance

•Invariant function:

•Output does not change under a transformation

•Example:

•Total energy is invariant under rotation

•Equivariant function:

•Output transforms predictably with the input

•Example:

•Forces rotate when the molecule rotates

•Formally:

•Invariance:

 f(Tx)=f(x)

•Equivariance:

 f(Tx)=Tf(x)



Equivariance vs Invariance

Use spherical harmonics in the message passing to ensure that only certain 

symmetries are allowed.

𝑚𝑚
𝑙

= ෍

𝑚1,𝑚2

𝐶𝑙1𝑚1,𝑙2𝑚2

𝑙𝑚 ℎ𝑚1

(𝑙1)
𝑟𝑚2

𝑙2

𝑟𝑖𝑗 = 𝑌𝑚
𝑙

𝑟𝑖𝑗 𝑓 𝑟𝑖𝑗



GRAPH NETWORKS AND THE MATBENCH DATASET

npj Comput. Mater. 6, 138 (2020)

Graph neural networks are widely used for property predictions in 

chemistry but excel on larger datasets



USES OF GRAPH NETWORKS

https://matbench.materialsproject.org

GNNs take up most of the top 

spots on the current leader 

board

Many high-performance MLIPs 

use graphs (MACE, nequip, 

allegro)



CONCEPT CHECKLIST

• Many datasets can be represented as 

graphs.

• GNNs work by i) building a graph and ii) 

propagating information between 

neighbours using NNs

• GNNs are scalable and can generalise 

well

• There are many possibilities for 

designing GNNs
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THANK YOU

mdi-group.github.com
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